
XM project

Equidistribution of sequences related to Ulam’s numbers

Alexei Condurachi, Jacob Bast Hall, Malte Kjellerup Juhl

January 2021

1

Contents

1 Introduction 3

2 Theory 3

3 Data Generation 4
3.1 Our Algorithm . 4
3.2 A Faster Algorithm . 5

4 Experimental Results 6
4.1 Investigation of the Fourier sums . 6
4.2 Distributions . 6
4.3 Pixel plot . 7
4.4 Counterexamples . 7

5 Conclusions 9

6 Future Work 9

7 Appendix (Figures and Tables) 11

References 19

2

1 Introduction

The main goal for this project is to study the behaviour of the Ulam sequence. First of all one
should present how it is defined: given two initial values a1 and a2, an is the smallest integer
bigger than an−1 that can be written uniquely as a sum of two different previous numbers. The
sequence is present in the OEIS database (A2858).

For instance, if we consider the standard initial values a1 = 1 and a2 = 2 the sequence is

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, . . . (1)

If we then consider as initial values a1 = 1 and a1 = 3 we obtain

1, 3, 4, 5, 6, 8, 10, 12, 17, 21, 23, 28, 32, 34, 39, 43, 48, 52, 54, 59, . . .

We will focus on (1).

A study of the partial Fourier series

fN (x) = <
N∑
n=1

eianx =

N∑
n=1

cos(anx) (2)

where the coefficients an are the Ulam numbers, reveals that there is a special frequency x = α ∼
2.5714474985, where the series seems to presents a linear growth in N , which was not expected.

This would mean that the dilated sequence αan has non-uniform behaviour mod 2π. In the project
we try and search for other values β such that βan behaves non-uniformly mod 2π. The standing
hypothesis in the literature is that this interesting behaviour occurs for β ∈ {kα | k ∈ N0} and no
other other values.

Furthermore, it looks like the phenomenon is the same for any ”non-degenerate” initial values (see
the Theory section for more on this); i.e. there always exists such an α depending on the initial
conditions.

2 Theory

For any integer sequence, it is natural to ask if it is equidistributed:

Definition 2.1. We say that a sequence (xn)n≥1 ∈ R is equidistributed modulo 1 if

lim
n→∞

#{n | 〈xn〉 ∈ [α, β]}
n

= β − α

where 0 ≤ α < β ≤ 1 and 〈x〉 is the fractional part of x. Weyl’s Criterion then states that

(xn)n equidistributed modulo 1 ⇐⇒
∑
n≤N

e2πkxn = o(N), ∀ k ∈ Z \ {0}

Inserting k = ±1 then gives∑
n≤N

(
e2πixn + e−2πixn

)
2

=
∑
n≤N

cos(xn) = o(N)

3

http://oeis.org/A002858

In fact for general frequencies, we expect fN (x) = O(
√
N) (this is like a random walk). But our

takeaway is that if ever
∑
n≤N cos(βan) = Θ(N) for some β, then βan is not equidistributed. This

gives us a strategy for searching for interesting β’s, namely by looking for linear growth of the cosine
sum.

There is another theorem stated on the Wikipedia page for Equidistributed sequence (they give a
reference to Felix Bernstein, 1911):

Theorem 2.1. For any sequence of distinct integers (an)n, the sequence (βan)n is equidistributed
mod 1 for almost all values of β.

In other words, the set of interesting β’s have measure 0. The hypothesis is that they are given
exactly by β = kα for k ∈ N0. Note that we should not be surprised that kα works (it is almost
like realizing that twice the even numbers are still even); the interesting part is that these are all
of them. Note that this also means that we can use all the (kαan)-sequences (using the different k,
that is) to tweak the value of α.

What happens if the initial conditions (a1, a2) are different? According to the literature, two
things may happen: There is a degenerate case (not an generally used term), where the consecutive
differences eventually become periodic. There are various results on when this is guaranteed to
happen, one of which is with (a1, a2) = (2, n) for any odd n ≥ 5 (Schmerl and Spiegel, 1994). But
in the non-degenerate case (sometimes called ”chaotic” in the literature), it seems like the same
phenomenon occurs, where one can find some frequency α, dependent on the particular sequence,
that works in the same way as described above.

3 Data Generation

We generate the first (107 − 1) of the standard Ulam numbers using the linear time algorithm
discussed below. In addition, we use our own quadratic time algorithm to generate Ulam-type
sequences up to 106 (note that this is a cap on the values, not the number of values) for initial
values of (1, 3), (1, 4), (1, 5), (2, 3), (2, 4) and (3, 4).

It took about 5 ∼ 6 minutes to generate each of these sequences using our own algorithm, and due
to the quadratic complexity the computing time quickly blows up for higher values. We don’t really
need more data for our current purposes anyway.

3.1 Our Algorithm

We have implemented in Python the following fairly naive algorithm for generating the Ulam
sequences running in O(M2) time, where we find all Ulam numbers up to M . The algorithm uses
a sieve method very similar to the sieve of Eratosthenes. At a conceptual level, it works like this:

• We compute the numbers sequence iteratively. Let L be the current list of Ulam numbers.

• Let the sieve S contain all integers that are a unique sum of two different numbers in L, but
excluding the numbers already in L. In this way, S contains candidates for coming Ulam
numbers.

• Repeat: The next Ulam number x is the minimum number in S. Update S by deleting x
from S and considering all sums in x+ a for a ∈ L. Add x to L.

4

https://en.wikipedia.org/wiki/Equidistributed_sequence#Metric_theorems

Note that we ”consider” each sum of two Ulam numbers exactly once with this method, which is
the benefit of using a sieve.

To implement the above in practice, we need to keep track of whether a candidate number has so
far been a sum 0, 1 or more than 1 times (let’s call this the multiplicity). The numbers with a
multiplicity of 1 correspond to S above.

In our implementation, we store the numbers with a multiplicity of 0 or 1 as keys in a sorted
dictionary, and with the multiplicity as the value. Whenever the multiplicity of a number surpasses
1, we delete it from the dictionary. The next Ulam number is the lowest key in the dictionary with
a multiplicity of 1. If x is the current Ulam number we are adding, then x + L ⊂ [x, 2x), so the
dictionary only contains keys in this range at any time (otherwise there would be infinitely many
keys with a value of 0).

Time complexity: Even though the sieve method is faster than naively checking all sums of L
each time we want to test if a number should be added to the sequence, we unfortunately still get
quadratic time. We have |L| = O(x) at any time, so the number of updates to the dictionary is
O(x), and each update takes O(1) time on average. So the full complexity is

M∑
x=1

O(x) · 1(x is Ulam number) ≤
M∑
x=1

O(x) = O(M2)

(Note that if the Ulam have positive natural density, then O(M2) = O(N2), where N is the
number of terms we find of the sequence. But if the Ulam numbers have a natural density of zero,
the complexity may actually be o(N2). The literature does not seem to agree on this point at the
moment, but it’s not important for our purposes.)

Performance: With our algorithm run on a standard laptop, it takes about 9 seconds to generate
the Ulam sequence up to 2 · 105, and about 5 ∼ 6 minutes to generate the sequence up the 106. We
might run into memory problems if we were to go much further (say if we ran it for several hours),
because the dictionary and output list are both of size Θ(N).

3.2 A Faster Algorithm

A faster way to compute the Ulam numbers is discussed in one of cited documentation. Now we
will briefly discuss it and explain the underlying idea of it, since it is well explained in [4].

The algorithm presented, which has been implemented in Java, uses the results found for α ∼
2.5714474985. This is translated to the fact that, when we consider the Ulam numbers modulo

λ =
2π

α
, the residues mod λ lie in the central half of the range for all but four Ulam numbers.

Using this result and sorting them according to their residue mod λ, the maximum number of steps
needed to determine if an integer is either in the sequence or not is reduced to 5. Because of this
the efficiency heavily depends on the time needed to keep the list of residues sorted.

To express how efficient this algorithm is, it suffices to say that even on ordinary computers it is
expected to take less than an hour to compute up to one billion Ulam numbers. Due to memory
space limitation, it was possible to compute (in less than a minute) just the first ten millions
elements of the sequence.

Furthermore we notice that the time needed to compute the sequence grows linearly.

5

4 Experimental Results

4.1 Investigation of the Fourier sums

In our investigations, we use the most precise estimate of α that we have found, which is given in
[3]:

α ≈ 2π

2.443442967784743433
≈ 2.571447498263977693

Figure 1 shows fN (x) =
∑N
n=1 cos(anx) for N ∈ {100, 1000}. Note that by the symmetries of

cosine, fN (x) = fN (2mπ ± x) for any m ∈ Z, so we only plot the range [0, π]. The spike at x = 0
is trivial of course, but we already see a clear spike at x = α in f100. In f1000 more spikes emerge.
Let’s write 〈x〉 for the unique value in [0, π] such that 〈x〉 = 2mπ ± x for some m ∈ Z (i.e. we take
mod 2π and then possibly reflect round π). We add lines at 〈kα〉 to the plots for k ∈ {0, . . . , 10},
and we see that they line up beautifully with the spikes.

Now let’s look more closely at how fN (x0) grows with N for fixed values of x0. Look at Figure 2.
The plot with x = 1 is typical for most values of x (1 was chosen arbitrarily). In contrast, at x = α
we see a striking linear growth. One of the main hypotheses is that a linear growth applies for all
x = kα. We see in the figure that it holds at least all the way up to k = 50, which is testament to
how finely the constant α is already tuned. At k = 100, the linearity is gone however.

In the three plots in the middle line of figure, we try to perturb α slightly with small ε to see how
sensitive the value is. ε = 10−7 is enough to clearly break linearity at x = α, but ε = 10−9 is not.
This is likely related to the fact that we have around 107 terms of the sequence. However, for k = 7
the linearity already breaks already with ε = 10−9; we mention this as a possible way to tweak the
value of α.

4.2 Distributions

Recalling the results discussed so far, we can introduce the set SN := {αan−2πbα2π

2π
c | 1 ≤ n ≤ N}.

We expect that SN has a uniform distribution if our sequence is equidistributed. We can see in in
Figure 5 that this is not the case for the value of α we have previously presented. This enables us
to study the behaviour of the sequence for different values of α and N .

First we can verify if the distribution of SN is still not uniform when we use multiples of α instead
of α itself. We can see in Figure 5 (where 6α has been chosen only for visual purposes) that our
claim holds true.

Moreover, studying how the distribution changes with regards to the α it is given allows us to
estimate the value of α (we have to recall that we are using an approximation that has been
extrapolated from the Fourier sums, in correspondence with its spikes). From Figure 6 it is easy
to see that we need at least 7 significant digits in order to have a distribution that is visibly not
uniform (which confirms what we have stated in the previous paragraph). In addition we can also set
boundaries for the value of α. In fact from the experiments we see that 2.5714474 ≤ α ≤ 2.5714476
since for those extreme points the corresponding distributions tend to be almost uniform (since we
are working with a limited set of Ulam numbers this is not clearly visible at first glance, increasing
the data set would make it more clear).

6

4.3 Pixel plot

One tool that can be very useful when we try look for patterns in a sequence of integers is to represent
the sequence as a boolean matrix in correspondence with our entries. After several attempts and
iteration it seems that using matrices with 108 columns makes the distribution of Ulam numbers
quite deterministic. We see a sort of linear disposition for them. If we study just the first 108×108
numbers it would appear that the Ulam’s numbers are disposed mainly in vertical lines. Zooming
out it we clearly see that this is not the case, as we can observe in Figure 3, that can be found in
the Appendix.

However, changing the number of columns (which corresponds to changing the modulo we are
considering) we can see that they tend to lie on parallel lines (Figure 4 in the Appendix). It is clear
then that the first intuition, that the modulo 108 was a good finding, appears to be incorrect. This
can be explained with the fact that we considered just a portion of our data set.

We then prove that there seems not to exist n such that the pixel plot presents vertical lines, i.e.
that the Ulam numbers are equidistributed modulo n ∀n ∈ N. This has been done by studying
the variance of how many of them are equal to k mod n. It appears, experimentally, that the
variance decreases when n increases, therefore the largest variance is obtain for n equal to 3 (the
computation was made with n ≥ 3; using the condition n ≥ 2 we obtain that the largest variance
occurs for n = 2).

In fact, in [3] the authors argue that the clusters we see have a period of

2π

5α− 4π
≈ 21.602 . . .

which supports our result that no integer n ”works”.

4.4 Counterexamples

In this section we used pseudorandom code to try to find values x so that

N 7→ fN (x) =

N∑
i=1

cos(aix)

grows linearly (equivalently 1
N

∑N
i=1 cos(aix) converges to a non-zero constant for N → ∞). This

behaviour seems to only be exhibited by values of the form kαmodulo 2π and we calculated 1
N fN (kα)

for 1 ≤ k ≤ 20 and N = 10, 000, 100, 000, 1, 000, 000 in Table 1 in the appendix down below. Note
that by symmetry cos(−x) = cos(x) we can find a unique ak ∈ [0, π] so that 1

N fN (kα) = 1
N fN (ak),

this is the value in the parentheses in Table 1 below (note that by mistake the alpha used here is
not the best estimate of α, but is very close).

In the search of other values x exhibiting linear growth of N 7→ fN (x), we used a for loop where
we generated a uniformly chosen number, a, in the interval [0.001, 3.141] with 10 digits. As by
periodicity and evenness of cosine the function x 7→ fN (x) on the interval [0, π] has the same image
as on the entire real line. We didn’t take on the full interval [0, π], so that it didn’t pick values very
close to 0 or π as these has a very high mean. Then we defined the function

x 7→ cos(ax)

7

and applied it to a list of the first 10,000 Ulam numbers. We then included the entry [a,Mean of Ulam list]
in another list. This was done 10,000 times and took between 1 and a half hour and 2 hours in
maple. This was done 10 times (so 100,000 data points in all) and each time all values with mean
higher than 0.030 (this was an arbitrarily chosen bound) was written down in Table 2 in the ap-
pendix down below (ranked by mean value). In addition it was noted if it was close to any kα
for 1 ≤ k ≤ 20 (we didn’t specify how close it needed to be as we didn’t have a sense of what would
be a good maximal difference, however all the numbers below are equal to their approximates up
to 4 digits when rounded up). Since the function

a 7→ 1

10, 000
f10,000(a)

is obviously continuous, values close enough to kα should also have a high mean. The results are
in Table 2 in the appendix down below (The table is split into 2 as it was very long).

Two values were found that wasn’t close to a kα, in these cases, we ran the same code as above, but
with a few modifications. We used 100,000 Ulam numbers instead of 10,000 and we generated 500
(instead of 10,000) random numbers in an area around that number (instead of in [0.001,3.141]).
Then we found the value with the maximum mean and noted it. In our 2 cases we had:

• 2.680627864: The maximum mean value in the interval [2.6795,2.6815] found was 2.680570462
with mean -0.00867.

• 2.171397916: The maximum mean value in the interval [2.1704,2.1724] found was 2.170727355
with mean 0.00783.

We did the same experiment with sine (8 instead of 10 experiments because of time issues, so 80,000
data points in all) and got the following results in Table 3 in the appendix down below (the table
is split into 2 as it was very long):

Here 4 values were found that wasn’t close to kα for 1 ≤ k ≤ 20. We did the same for these values
as above (interestingly 2 of the values were very close so we just used the same experiment for
both):

• 0.2661285736: The maximum mean value in the interval [0.2651,0.2671] found was 0.2661335994
with mean 0.01173.

• 2.893332718 and 2.893329854: The maximum mean value in the interval [2.8923,2.8943]
found was 2.893318409 with mean -0.00931.

• 3.022839268: The maximum mean value in the interval [3.0218,3.0238] found was 3.022635522
with mean -0.01135.

In both experiments most of the values were close to kα, which supports our hypothesis. The few
values for which this was not the case, the mean was below 0.037 and all the 500 values found
around the values, using 100,000 Ulam numbers, had a much lower mean than originally. A similar
behavior can however also be seen for example when calculating 10,000 mean and 100,000 mean
of 15α, which is also a bit of a decrease, so this doesn’t have to mean anything. Obviously the
values of kα with mean less than 0.030 at 10,000 Ulam numbers were never detected in the cosine
experiment, except for 11α and 14α, as some of the values close to these (and values close to some
other kα) gave us higher values than in the table above, so either these are not very close to the

8

”true value” of kα, or for a low number of Ulam numbers some values around the ”true value”
of kα has a higher mean. Curiously 2α was only detected once in the cosine experiment and only
with a mean of -0.033, despite having an actual mean of 0.289, and 8α was never detected despite
having a mean of 0.105. This means that this method is clearly flawed as it didn’t detect values
with high mean that we know exists, so we could have missed others.

5 Conclusions

Our hypothesis that N 7→ fN (x) =
∑N
n=1 cos(anx) being linear implies that x = kα (up to sym-

metries) for some k ∈ N0, is supported by our findings so far. Calculations of fN (kα)/N for high
N and graphical representations of fN (α) indicate that N 7→ fN (kα) is linear, at least for k small
enough. The spikes from the graphs of our plots of f100(x) and f1000(x) seems to align nicely with
kα modulo 2π, indicating that these are the only ones, though this is a purely visual argument and
were done for low N .

The pseudorandom experiments only found counterexamples with a relatively low mean value, that
seems to decrease further when increasing N , and therefore can possibly be written off as anomalies
for low N . The pseudorandom experiments were however not able to detect 8α and only just
detected 2α, despite both having a high mean, so this experiment is clearly flawed and will most
likely need more data points to be more reliable.

6 Future Work

• A major thing we wanted to look at was other initial conditions on the Ulam numbers, and
examine if they exhibit similar behavior. We have the data at hand already, but did not get
around to investigate it. In particular examining for which initial values a value similar to
alpha exists, as other theoretical work we’ve read suggests that in some cases such a value
seem to exist and sometimes it doesn’t as discussed in the theory chapter. So looking at the
pairs of initial values on the Ulam numbers which exhibit such behaviour could be of interest.

Furthermore, it would be interesting to determine the corresponding α-values. In [2], a few
are reported:

α(1,3) ∼ 2.83349751 . . .

α(1,4) ∼ 0.506013502 . . .

α(2,3) ∼ 1.1650128748 . . .

One could verify these and try find the α for other initial conditions.

Lastly it could be interesting to compare the distributions SN for different initial condition.
Do the distributions share similar qualitative traits? To do this, we first need to know the
corresponding α-values.

We upload data files with Ulam-type sequences for various initial conditions, as well as dis-
tribution plots for the initial conditions with known α’s listed above.

• Another thing we want to look at would be to make the pseudorandom code more time
efficient, as it clearly seems that more data points are needed when searching for values with

9

a high mean is needed to make it reliant, as the experiment wasn’t able to detect some values
of interest that we knew existed. Doing the experiments for more Ulam numbers could be
interesting, however it could be argued that values with high mean would be even harder to
detect since the points around values with high mean should converge to 0. Meaning that
we need to to detect a value with high mean even more accurately than we would with only
10,000 Ulam numbers and therefore even more data points would be needed to compensate
for this making the runtime very long.

If the code can be made sufficiently efficient (perhaps using Python?), we might be able to
even do a thorough search in small increments of x and stop using random samples.

10

7 Appendix (Figures and Tables)

Figure 1: fN (x) =
∑N
n=1 cos(anx) for x ∈ [0, π] and N ∈ {100, 1000}. The vertical lines are

x = 〈kα〉 for k = 0, . . . , 10.

Table 1: The values of N−1
∑N
n=1 cos(kαan) for 1 ≤ k ≤ 20 and N =

104, 105 and 106 respectively.

Value 10,000 Ulam 100,000 Ulam 1,000,000 Ulam

α (2.5714474995) -0.79372 -0.79455 -0.79511
2α (1.140290308) 0.28902 0.28922 0.29102
3α (1.431157192) 0.24773 0.25275 0.24975
4α (2.28058062) -0.56553 -0.57670 -0.57261
5α (0.29086688) 0.56738 0.57935 0.57394
6α (2.86231438) -0.33861 -0.34405 -0.33719
7α (0.84942342) 0.06305 0.05851 0.05079
8α (1.72202408) 0.10527 0.11646 0.12336
9α (1.98971373) -0.12430 -0.13432 -0.13804
10α (0.58173377) 0.05502 0.05765 0.05633
11α (3.13000404) 0.01143 0.01623 0.02280
12α (0.55855654) -0.02549 -0.03245 -0.04237
13α (2.01289096) -0.00084 0.00349 0.01361
14α (1.69884685) 0.02581 0.02291 0.01545
15α (0.87260065) -0.02119 -0.01408 -0.01064
16α (2.83913716) -0.00847 -0.02258 -0.02248
17α (0.26768966) 0.03684 0.05404 0.05222
18α (2.30375784) -0.04279 -0.05501 -0.05359
19α (1.40797996) 0.02787 0.02854 0.02872
20α (1.16346754) -0.00885 0.00154 0.00007

11

Figure 2: fN (x) for select fixed values of x and N ∈ {1, . . . 107 − 1}.

12

Figure 3: Pixel plots of reduced sets.

Figure 4: Pixel plot of the first 107 Ulam numbers.

13

Figure 5: Distribution of SN for N = 106 for α and 6α.

Figure 6: Distribution of SN for N = 106 for α rounded up to 7 digits, for α = 2.5714474, 2.5714476.

14

Table 2: Cosine pseudorandom ex-
periment results.

Value Mean Approx.

0.2908569968 0.494 5α
2.571436358 -0.489 α
2.862317336 -0.306 6α
1.431150773 0.281 3α
1.431153589 0.275 3α
1.431147311 0.270 3α
2.571410664 0.158 α
1.431165342 0.125 3α
2.862326688 -0.124 6α
0.8494339180 0.112 7α
0.2908077842 0.092 5α
0.8494434892 0.091 7α
0.8494261535 0.082 7α
1.431167819 0.080 3α
0.8493977674 -0.071 7α
2.012877602 -0.065 13α
2.571533226 0.058 α
3.129990560 0.057 11α
0.5817249181 0.056 10α
2.571371618 0.055 α
2.280492787 0.054 4α
2.862396139 0.053 6α
2.571345848 -0.051 α
1.698821692 -0.047 14α
0.2909935426 -0.045 5α
1.698852594 0.045 14α
2.571296220 -0.044 α
2.303754300 -0,043 18α
1.989726789 -0.043 9α
2.303753774 -0.043 18α
1.431087745 0.042 3α
0.2908379101 -0.040 5α
0.2909910223 -0.039 5α
0.2676956441 0.039 17α
0.2914101180 -0.038 5α
2.012862229 -0.037 13α
2.680627864 0.036 ?
0.2908164740 0.035 5α

15

Value Mean Approx.

2.280032395 0.034 4α
0.2909260433 0.034 5α
1.698813638 -0.034 14α
1.140363151 -0.033 2α
2.280489584 0.032 4α
2.171397916 0.031 ?
2.280664902 0.030 4α
2.862283023 0.030 6α

16

Table 3: Sine pseudorandom experi-
ment results.

Value Mean Approx.

2.571436358 0.531 α
2.280558758 0.405 4α
2.571419379 0.372 α
2.862335205 -0.260 6α
1.431171548 0.251 3α
1.431165342 0.249 3α
0.2908569968 -0.219 5α
1.140293410 0.185 2α
1.431182909 0.131 3α
0.2909350130 0.122 5α
2.571410664 0.119 α
0.2907912295 -0.104 5α
0.8494261535 -0.096 7α
0.5585570850 -0.096 12α
0.2907892342 -0.094 5α
2.571326636 0.093 α
0.2909260433 0.090 5α
2.571323269 0.076 α
1.722052451 0.070 8α
2.862378170 -0.068 6α
1.698845067 -0.063 14α
0.2914010272 0.057 5α
0.2907572099 -0.057 5α
1.140363151 0.052 2α
2.280664902 -0.051 4α
2.571533226 -0.050 α
1.140209638 -0.050 2α
0.2909756705 0.049 5α
1.431087745 -0.048 3α
0.2910320415 0.047 5α
0.2908077842 -0.046 5α
0.2909935426 0.042 5α
2.862433021 -0.041 6α
0.2908084424 -0.041 5α
1.698853038 -0.040 14α
1.431039228 -0.039 3α
0.2913863729 0.039 5α
0.8494339180 -0.038 7α
2.280852761 -0.038 4α

17

Value Mean Approx.

2.570992589 0.037 α
0.2904089143 -0.037 5α
0.5585902345 0.037 12α
2.571601380 -0.036 α
2.862835423 -0.036 6α
2.571750719 -0.036 α
2.571650842 -0.035 α
2.571669804 -0.035 α
0.5590769745 0.033 12α
0.2661285736 0.032 ?
1.431271589 0.032 3α
2.280424626 0.032 4α
0.2919850428 0.032 5α
2.893332718 -0.032 ?
0.2901417212 0.031 5α
0.5590807799 0.031 12α
2.893329854 -0.031 ?
2.571046418 0.031 α
2.012862229 0.030 13α
3.022839268 0.030 ?
1.989185592 0.030 9α

18

References

[1] OEIS A2858

[2] A Hidden Signal In The Ulam Sequence (S. Steinberger, 2016)

[3] The Ulam Numbers up to One Trillion (P. E. Gibbs, 2017)

[4] An efficient method for computing Ulam numbers (P. E. Gibbs, 2015)

19

http://oeis.org/A002858
https://arxiv.org/abs/1507.00267
https://www.researchgate.net/publication/320980165_The_Ulam_Numbers_up_to_One_Trillion
https://vixra.org/abs/1508.0085

	Introduction
	Theory
	Data Generation
	Our Algorithm
	A Faster Algorithm

	Experimental Results
	Investigation of the Fourier sums
	Distributions
	Pixel plot
	Counterexamples

	Conclusions
	Future Work
	Appendix (Figures and Tables)
	References

