
Progetto di Modelli della Fisica Matematica: Il modello SI con
demografia

Condurachi Alexei

28 agosto 2020



2

Presentazione del Modello

Di seguito analizzeremo il modello epidemiologico che descrive l’evoluzione di un’epidemia di
peste suina in una popolazione di cinghiali.
Quest’ultima è divisa in due compartimenti: quello dei SUSCETTIBILI, che indicheremo con
la lettera S, costituito dai cinghiali che possono contrarre la malattia, e il compartimento degli
INFETTI, denotato con la lettera I, composto da coloro che hanno contratto la peste e possono
trasmetterla.
Nel modello verranno considerate le dinamiche demografiche all’interno di una popolazione: il
numero di suscettibili S può crescere per la nascita di nuovi individui (supposti non immuni alla
malattia, nè vaccinati) e può decrescere, oltre che per la peste, che causa ovviamente il passaggio
al compartimento degli infetti, anche per la mortalità naturale; allo stesso modo il numero di
infetti I può decrescere, oltre che per le morti dovute alla malattia, anche per le morti naturali.
Si considera inoltre la possibilità di abbattere in modo non selettivo alcuni capi di bestiame, che
quindi comporta la possibilità di decrescita per entrambi i compartimenti, in modo da contrastare
la diffusione dell’epidemia.

Le equazioni del modello

Di seguito presentiamo le leggi di bilancio per il compartimento dei suscettibili e per quello degli
infetti. Le numerosità dei due compartimenti verranno indicate con S e I, rispettivamente.

• SUSCETTIBILI
Per descrivere l’evoluzione degli individui del compartimento S, introduciamo un termine
di crescita analogo a quello del modello di competizione esclusiva. Esso modellizza il regi-
me di competizione intraspecie e interspecie che viene ad instaurarsi fra gli individui del
compartimento S, sia con quelli dello stesso gruppo, che con quelli di I, per ottenere le
limitate risorse disponibili.
Introduciamo la capacità portante k (con k > 0), definita come il numero massimo di indi-
vidui di una popolazione che possono vivere in un determinato ecosistema, compatibilmente
con le limitate risorse disponibili. Essa rappresenta il livello di sfruttamento ottimale del-
l’ambiente in cui la popolazione vive e può essere quindi interpretata come numero di posti
occupabili. Dal momento che la funzione di crescita di tipo logistico è della forma

numero di posti disponibili

numero di posti occupabili

tenendo conto della presenza di entrambi i compartimenti, il numero di posti che si possono
occupare è k, e quello dei disponibili è k − (S + I). Dunque il termine logistico assume la

seguente forma 1− S + I

k
.

Avremo per S un termine di crescita del tipo

r · S · (1− S + I

k
)

dove il parametro r, detto tasso netto di crescita, è definito come r := ν − µ, che sono
rispettivamente il tasso di natalità e quello di mortalità naturale, entrambi positivi.

Il compartimento S può decrescere, oltre che per la mortalità naturale e per la competizio-
ne, anche per l’infezione.
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Il termine di infezione (termine di perdita per S), viene scelto proporzionale al numero di
incontri binari fra animali dei due compartimenti, descritto da S · I.

Il termine di infezione per S sarà quindi

−β · S · I

dove il parametro β > 0 rappresenta il tasso di infezione.

Il compartimento S può decrescere anche a causa dell’abbattimento non selettivo, model-
lizzato con un termine di perdita proporzionale al numero di individui di S.

Il termine di rimozione (di abbattimento) per S sarà allora

−c · S

dove c ≥ 0 indica il tasso di abbattimento.

La legge di bilancio per il compartimento dei suscettibili avrà la seguente forma:

dS

dt
= rS(1− S + I

k
)− βSI − cS (1)

• INFETTI
Per descrivere l’evoluzione degli individui del compartimento I, osserviamo che questo può
crescere solo a causa dell’infezione, che comporta il passaggio degli individui dal compar-
timento dei suscettibili a quello degli infetti. Introduciamo perciò un termine di infezione
analogo a quello per il primo compartimento, stavolta di guadagno per il compartimento
degli infetti.

Il termine di infezione per I sarà quindi

β · S · I

dove il parametro β > 0 rappresenta il tasso di infezione.

Il compartimento I può decrescere sia a causa della mortalità naturale, che a causa di
quella indotta dalla malattia. Sarà necessario perciò introdurre un termine di perdita,
proporzionale al numero di individui di I.

Il termine di mortalità per I sarà quindi

−(α+ µ) · I

dove il parametro α > 0 rappresenta il tasso di mortalità indotto dalla malattia, il parame-
tro µ > 0 quello di mortalità naturale.

Infine il compartimento I può decrescere anche a causa dell’abbattimento non selettivo,
modellizzato, come prima con un termine di perdita proporzionale al numero di individui
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di I.

Il termine di rimozione (di abbattimento) per I sarà allora

−c · I

dove c ≥ 0 indica il tasso di abbattimento.

La legge di bilancio per il compartimento degli infetti assumerà perciò la forma:

dI

dt
= βSI − (α+ µ+ c)I (2)

Il modello viene descritto quindi dalle seguenti equazioni
dS

dt
= rS(1− S + I

k
)− βSI − cS

dI

dt
= βSI − (α+ µ+ c)I

(3)

Studio qualitativo del modello con c 6= 0

Studiamo qualitativamente il modello nel caso si adoperi l’abbattimento non selettivo dei capi
di bestiame per prevenire il dilagare dell’epidemia.

Consistenza

Ricordiamo che un modello matematico viene detto consistente se, a partire da dati iniziali po-
sitivi, le soluzioni si mantengono positive ∀ t > 0.
Per far vedere la positività delle soluzioni a partire da dati iniziali positivi (e nel nostro caso lo
sono dal momento che rappresentano la numerosità iniziale di compartimenti di una popolazione
di cinghiali), osserviamo che il primo quadrante del piano (S, I) è un insieme invariante.

S = 0 è soluzione. L’asse I, di equazione S = 0, e in particolare il semiasse positivo
{(0, I) | I > 0}, è quindi una traiettoria particolare (verticale) e non può essere attraversato
poiché le traiettorie, per il teorema di esistenza e unicità delle soluzioni a un problema di Cau-
chy, non possono intersecarsi.
S = 0 ⇒ S′ = 0, quindi S(t) = S(0) = 0 ∀ t > 0 e la popolazione dei suscettibili si mantiene
costantemente nulla. In tal caso I ′ = −(α+ µ+ c)I ⇒ I(t) = I0e

−(α+µ+c)t.

Analogamente, dato che I = 0 è soluzione, l’asse S di equazione I = 0 e in particolare il
semiasse positivo {(S, 0) | S > 0} è una traiettoria orizzontale e non può essere attraversato.
I = 0 ⇒ I ′ = 0, quindi I(t) = I(0) = 0 ∀ t > 0 e la popolazione degli infetti si mantiene
costantemente nulla.

Il primo quadrante del piano (S, I), dal momento che i semiassi positivi S e I non possono
essere attraversati essendo particolari traiettorie, risulta invariante. Ciò comporta che, a partire
da dati iniziali positivi S0 > 0, I0 > 0, le soluzioni si mantengono positive per ogni istante dello
studio, cioè S(t) > 0, I(t) > 0 ∀ t > 0.
Ne concludiamo quindi che il modello è consistente.
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Equilibri

Per individuare i punti di equilibrio, procediamo annullando il campo vettoriale f = (f1, f2)
T

dove f1 = rS(1− S + I

k
)− βIS − cS e f2 = βIS − (α+ µ+ c)I.

f1 = 0 ⇐⇒ S[r(1− S + I

k
)− βI + c] = 0 ⇐⇒ S = 0 ∨ I = − r

r + βk
S +

k(r − c)
r + βk

.

f2 = 0 ⇐⇒ I[βS − (α+ µ+ c)] = 0 ⇐⇒ I = 0 ∨ S =
α+ µ+ c

β
.

Combiniamo quindi i valori di S e di I per cui si annullano entrambe le componenti del campo
vettoriale.
Per S = 0 si annulla la prima componente, e in tal caso la seconda si annulla solo per I = 0.
Quindi O = (0, 0) è un punto di equilibrio.

Per I = 0 si annulla la seconda componente del campo f . La prima diventa S(r − rS

k
− c), che

si annulla per S = 0, valore per cui ritroviamo l’origine O del piano (S, I), o per S =
k(r − c)

r
.

Quindi (
k(r − c)

r
, 0) è un secondo punto di equilibrio.

Per S =
α+ µ+ c

β
si annulla la seconda componente e la prima risulta nulla ⇐⇒

⇐⇒ α+ µ+ c

β
= −r + βk

r
I − k

r
c+

1

k
⇐⇒ I =

k

r + βk
· (r − c)− r

βk
(α+ µ+ c).

Gli equilibri risultano quindi essere:

• O = (0, 0), che rappresenta la scomparsa totale della popolazione;

• E1 = (
k(r − c)

r
, 0), che rappresenta l’assenza di infetti e lo stabilizzarsi della popolazione

dei suscettibili;

• E2 =

(
α+ µ+ c

β
,

k

r + βk
· (r − c)− r

r + βk
(α+ µ+ c)

)
, che rappresenta la coesistenza

di suscettibili e infetti.

Affinché questi equilibri esistano, è necessario che ciascuna delle loro componenti sia non negati-
va, dal momento che il loro significato è quello di valori di numerosità dei compartimenti di una
popolazione.

L’equilibrio O esiste per ogni scelta dei parametri positivi (tc r sia positivo), come da ipotesi
su di essi.
L’equilibrio E1 esiste per c < r.
L’equilibrio E2 ha una prima componente positiva per ogni scelta dei parametri, mentre, perché

lo sia la seconda, è necessario che 0 < c < r
βk − (α+ µ)

r + βk
e che k >

(α+ µ)

β
.

Ricapitolando:

• il primo equilibrio esiste sempre.
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• se c > r è presente anche E1.

• per 0 < c < r
βk − (α+ µ)

r + βk
e k >

(α+mu)

β
esiste anche un terzo equilibrio distinto dagli

altri due, E2.

Osserviamo che per c = r l’equilibrio E1 coincide con O. Per c = r
βk − (α+ µ)

r + βk
otteniamo che

gli equilibri E1 ed E2 sono coincidenti.
Osservazione: il modello riesce a descrivere una situazione in cui, all’equilibrio, siano pre-
senti contemporaneamente suscettibili e infetti. Possiamo dire dunque che il modello descrive
nell’ipotesi di esistenza per E2 una malattia che si endemizza.

Isocline e direzione del campo nel piano (S, I)

La 1-isoclina è il luogo dei punti a tangente verticale e si trova annullando la prima componente
del campo vettoriale, f1.

f1 = 0 ⇐⇒ S[r(1− S + I

k
)− βI + c] = 0 ⇐⇒ S = 0 ∨ I = − r

r + βk
· S +

k(r − c)
r + βk

.

Quindi otteniamo la traiettoria verticale S = 0 e la retta di equazione

I = − r

r + βk
· S +

k(r − c)
r + βk

(4)

che ha pendenza negativa pari in modulo a
r

βk + r
< 1 passante per i punti

(
0,
k(r − c)
βk + r

)
e(

k(r − c)
r

, 0

)
.

La 2-isoclina è il luogo dei punti a tangente orizzontale e si trova annullando la seconda
componente del campo vettoriale, f2.

f2 = 0 ⇐⇒ I[βS − (α+ µ+ c)] = 0 ⇐⇒ I = 0 ∨ S =
α+ µ+ c

β
.

Quindi otteniamo la traiettoria orizzontale I = 0 e la retta verticale di equazione

S =
α+ µ+ c

β
(5)

Studiamo la direzione del campo nel primo quadrante

f1 > 0 ⇐⇒ S[r(1− S + I

k
)− βI − c] > 0 ⇐⇒ I < − r

βk + r
S + k

r − c
r + βk

essendo S ≥ 0 e

f2 > 0 ⇐⇒ I[βS − (α+ µ+ c)] > 0 ⇐⇒ S >
α+ µ+ c

β

essendo I ≥ 0.
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Il campo è quindi diretto verso destra al di sotto della retta (4), verso sinistra sopra di essa;
è diretto verso l’alto a destra della retta (5), verso il basso alla sua sinistra.

Sappiamo che i punti di equilibrio coincidono con i punti di intersezioni fra le isocline rap-
presentate nel piano (S, I) e in particolare vogliamo soluzioni che abbiano componenti positive
o al più nulle in quanto S e I indicano la numerosità dei due compartimenti. Dai grafici per le
isocline notiamo in maniera più immediata come il numero di equilibri vari a seconda del valore
del parametro c.

Figura 1: Isocline nel caso c < r
βk − (α+ µ)

r + βk

Figura 2: Isocline nel caso c > r
βk − (α+ µ)

r + βk

Stabilità degli equilibri

Studiamo la stabilità degli equilibri trovati mediante linearizzazione, con il primo metodo di
Liapunov.
A tale scopo calcoliamo la matrice Jacobiana del sistema:

Jf(S, I) =
r − 2

r

k
S − (

r

k
+ β)I − c − r

k
S − βS

βI βS − (α+ µ+ c)
(6)
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e valutiamola nei tre punti di equilibrio trovati, studiando per ciascuno di essi il segno della parte
reale degli autovalori della matrice.

Per l’equilibrio O = (0, 0) troviamo

Jf(0, 0) =
r − c 0

0 −(α+ µ+ c)

che è una matrice diagonale. Gli autovalori si trovano dunque sulla diagonale e sono r − c e
−(α+ µ+ c) < 0.
Se c > r abbiamo che entrambi gli autovalori sono negativi e dunque O è un nodo asintotica-
mente stabile.
Se c < r gli autovalori sono reali discordi (esiste E1) e dal primo metodo di Liapunov si conclude
che O è una sella instabile.

Se c < r esiste l’equilibrio E1 = (
k(r − c)

r
, 0) e troviamo

Jf(
k(r − c)

r
, 0) =

−r + c −(r − c)(1 +
βk

r
)

0 βk(r − c)− (α+ µ+ c)

che è una matrice triangolare superiore. Gli autovalori si trovano dunque sulla diagonale e sono

−r + c < 0 e βk(r − c)− (α+ µ+ c) < 0 ⇐⇒ c >
r(βk − (α+ µ))

r + βk
.

Gli autovalori sono quindi reali negativi nel caso in cui r > c >
r(βk − (α+ µ))

r + βk
, cioè se

non esistono altri equilibri oltre a O ed E1, mentre sono reali discordi nel caso in cui 0 < c <
r(βk − (α+ µ))

r + βk
(ovvero quando esiste anche E2, a condizione che k >

α+ µ

β
). Nel primo caso

E1 è asintoticamente stabile, nel secondo una sella instabile.

Se 0 < c <
r(βk − (α+ µ))

r + βk
e k >

α+ µ

β
, esiste l’equilibrio

E2 =

(
α+ µ+ c

β
,

k

r + βk
· (r − c)− r

r + βk
(α+ µ+ c)

)
e troviamo

Jf(E2) =
− r
k
· α+ µ+ c

β
−r + βk

k
· α+ µ+ c

β
βk(r − c)− r(α+ µ+ c)

r + βk
0

Studiamo la traccia e il determinante della Jacobiana.

Tr(Jf(E2)) = − r
k
· α+ µ+ c

β

det(Jf(E2)) =
α+ µ+ c

βk
· [βk(r − c)− r(α+ µ+ c)]

Il criterio di Routh-Hurwitz in dimensione 2 afferma che se Tr(Jf(E2)) < 0 ∧ det(Jf(E2)) > 0
allora l’equilibrio E2 è asintoticamente stabile.
La traccia è negativa per ogni scelta dei parametri, mentre il determinante è positivo se e solo

se c < r
βk − (α+ µ)

r + βk
e k >

α+ µ

β
, cioè se e solo se l’equilibrio E2 esiste. Ovvero se esiste, E2 è

asintoticamente stabile.
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Quindi l’equilibrio O è stabile per c > r e instabile altrimenti.

E1 è asintoticamente stabile se e solo se r
βk − (α+ µ)

r + βk
< c < r, cioè se non esiste E2, mentre

è instabile nel caso in cui c < r
βk − (α+ µ)

r + βk
e k >

α+ µ

β
.

E2 quando esiste è asintoticamente stabile.

Se è presente solo O come equilibrio, esso è stabile. Nel caso in cui siano presenti i primi
due equilibri, l’origine si destabilizza quando interagisce con E1, con cui coincide per c = r,
ed E1 risulta asintoticamente stabile; nel caso in cui gli equilibri siano tre, l’origine è ancora
instabile, E1 si destabilizza quando interagisce con l’equilibrio E2 con cui va a coincidere per

c = r
βk − (α+ µ)

r + βk
e il nuovo equilibrio E2 risulta asintoticamente stabile.

Simulazioni delle leggi orarie

Andiamo a vedere quali sono le leggi orarie nel caso in cui esista solo l’origine come equilibrio,
nel caso si abbiano due equilibri O ed E1 e nel caso k >

α+ µ

β
in cui esiste anche E2.
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Figura 3: Leggi orarie nel caso c > r

Se c > r vediamo come la popolazione sia inesorabilmente destinata all’estinzione per via
dell’abbattimento troppo invasivo.
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Figura 4: Leggi orarie nel caso
r(βk − (α+ µ))

r + βk
< c < r

Nel caso in cui siano presenti due soli equilibri, la malattia è destinata ad estinguersi,
permettendo così la crescita della popolazione fino alla capacità massima k.
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Figura 5: Leggi orarie nel caso 0 < c <
r(βk − (α+ µ))

r + βk

Se è ammissibile anche l’equilibrio E2, siamo nella condizione di coesistenza con la malattia
che non scompare, ma rimane presente nella popolazione.
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Andamento delle traiettorie di fase intorno agli equilibri

Equilibrio O = (0, 0)

Consideriamo l’equilibrio O = (0, 0), che risulta essere un nodo asintoticamente stabile se c > r
e una sella instabile per c < r. Per capire come sono fatte le varietà stabile WS(O) e instabi-
le WU (O) dell’origine, andiamo a studiare quelle del problema linearizzato intorno all’origine.
Queste sono gli autospazi relativi rispettivamente all’autovalore negativo [−(α+ µ+ c)] e all’au-
tovalore positivo r−c e risultano tangenti alle varietà stabile e instabile dell’origine del problema
non lineare.

L’autospazio relativo all’autovalore negativo, E(−(α + µ + c)), si trova risolvendo Jf(O) ·
(S, I)T = −(α+ µ+ c) · (S, I)T , cioè

r − c 0
0 −(α+ µ+ c)

· S
I

= −(α+ µ+ c) · S
I

Si ottiene E(−(α+ µ+ c)) = {(S, I)|S = 0}, cioè l’asse I. Essendo questa una traiettoria, la
varietà stabile del problema linearizzato non solo è tangente a quella del problema non lineare,
ma coincide con essa e rappresenta il luogo di punti dal quale è possibile raggiungere l’equilibrio
instabile (0, 0). Ciò è ragionevole in quanto implica che l’estinzione totale possa essere raggiunta
soltanto a partire da una popolazione composta interamente da individui infetti, che può solo
decrescere a causa della mortalità, naturale, indotta dalla malattia o dall’abbattimento non se-
lettivo.

L’autospazio relativo all’autovalore positivo E(r − c), si trova risolvendo Jf(O) · (S, I)T =
(r − c) · (S, I)T , cioè

r − c 0
0 −(α+ µ+ c)

· S
I

= (r − c) · S
I

Si ottiene E(r − c) = {(S, I)|I = 0}, cioè l’asse S, che essendo una traiettoria, non solo è
tangente alla varietà instabile di O del problema non lineare, ma coincide con essa.
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Figura 6: Diagramma di fase nel caso c > r
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Equilibrio E1 = (
k(r − c)

r
, 0)

Consideriamo ora l’equilibrio E1 = (
k(r − c)

r
, 0) nel caso in cui risulta asintoticamente stabile,

cioè r > c > r
βk − (α+ µ)

r + βk
.

Come abbiamo visto nello studio della matrice Jacobiana valutata in E1, i suoi autovalori sono
−r + c < 0 e βk(r − c) − (α + µ + c) e, sotto queste condizioni per il parametro c, risultano
entrambi reali negativi, perciò l’equilibrio è un nodo asintoticamente stabile.
Nel caso in cui gli autovalori sono distinti, E1 è un nodo a due tangenti e le traiettorie che
convergono all’equilibrio, sono tangenti nel punto all’autospazio relativo all’autovalore minore in
modulo. Analogamente a quanto visto prima, l’autospazio relativo a −r+c si individua risolvendo

Jf

(
k(r − c)

r
, 0

)
· (S, I)T = (−r + c) · (S, I)T

cioè

−r + c −(r − c)(1 +
βk

r
)

0 βk(r − c)− (α+ µ+ c)
· S
I

= (−r + c) · S
I

mentre quello relativo a [βk(r − c)− (α+ µ+ c)] risolvendo

Jf

(
k(r − c)

r
, 0

)
· (S, I)T = (βk(r − c)− (α+ µ+ c)) · (S, I)T

cioè

−r + c −(r − c)(1 +
βk

r
)

0 βk(r − c)− (α+ µ+ c)
· S
I

= (βk(r − c)− (α+ µ+ c)) · S
I
.

Si ottiene così E(−r + c) = {(S, I)|I = 0} e

E(βk(r − c)− (α+ µ+ c)) = span{
(

1,−(1− (α+ µ+ c)r

(r + βk)(r − c)
)

)
}

Imponendo il passaggio della generica retta di ciascun autospazio per il punto (
k(r − c)

r
, 0), si

ottengono rispettivamente le tangenti

I = 0,

cioè l’asse S, e la retta

I = −(1− (α+ µ+ c)r

(r + βk)(r − c)
)S + k(

r − c
r
− α+ µ+ c

r + βk
)). (7)

Nel caso quindi in cui r > c > r
βk + r − (α+ µ)

2r + βk
, cioè l’autovalore (−r + c) è il minore in

modulo, le traiettorie convergono a E1 tangenti all’asse S ().
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Figura 7: Leggi orarie nel caso 0 < c <
r(βk − (α+ µ))

r + βk

Nel caso in cui r
βk + r − (α+ µ)

2r + βk
> c > r

βk − (α+ µ)

r + βk
, cioè l’autovalore (βk(r − c)− (α+

µ+ c)) è il minore in modulo, arrivano a E1 tangenti alla retta (7). Tale retta ha pendenza ne-

gativa e minore di 1 in modulo, infatti il coefficiente angolare è −(1− (α+ µ+ c)r

(r + βk)(r − c)
) < 0 ⇐⇒

(α+ µ+ c)r

(r + βk)(r − c)
< 1 ⇐⇒ c > r

βk + r − (α+ µ)

2r + βk
, ovvero nelle ipotesi in cui ci siamo messi.
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Figura 8: Diagramma nel caso r > c >
r(βk − (α+ µ))

r + βk
con tangente al punto pari a (7)

Se invece c = r
βk + r − (α+ µ)

2r + βk
, allora i due autovalori sono reali negativi coincidenti con
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molteplicità geometrica minore di quella algebrica, perciò E1 risulta essere un nodo ad una
tangente asintoticamente stabile. Infatti l’autospazio E(−r) = span{(1, 0)} ha dimensione 1 ed
è ancora parallelo all’asse S. Imponendo il passaggio per (k, 0) troviamo che la tangente è l’asse S.
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Figura 9: Diagramma nel caso c = r
βk + r − (α+ µ)

2r + βk
con tangente all’asse S

Consideriamo adesso E1 nel caso c < r
βk − (α+ µ)

r + βk
nel quale risulta una sella instabile e

calcoliamo, analogamente a quanto fatto per l’origine, le tangenti alle varietà stabile e instabile
studiando gli autospazi del problema linearizzato intorno a E1.

Sfruttando i calcoli del passaggio precedente, l’autospazio relativo all’autovalore −r + c < 0
è E(−r + c) = {(S, I)|I = 0}, cioè l’asse S che, essendo una traiettoria, non solo è tangente alla
WS(E1), ma coincide con essa.
L’autospazio relativo all’autovalore positivo è

E(βk(r − c)− (α+ µ+ c)) = span{
(

1,−(1− (α+ µ+ c)r

(r + βk)(r − c)
)

)
}

e imponendo il passaggio della generica retta per il punto (k, 0), si ottiene ancora una volta la
(7), con pendenza negativa.
WU (E1) risulta quindi tangente alla retta ottenuta in (7).

Equilibrio E2 =

(
α+ µ+ c

β
,

k

r + βk
· (r − c)− r

βk
(α+ µ+ c)

)
Nel caso in cui tale punto stazionario esista, e cioè c < r

βk − (α+ µ)

r + βk
, esso risulta asintoticamente

stabile. Per capire quale è la sua natura, andiamo a studiare gli autovalori della matrice Jacobiana
per capire se questi sono reali negativi, distinti o coincidenti, o complessi coniugati con parte
reale negativa.

Il polinomio caratteristico per la matrice Jacobiana è dato da

p(λ) = λ2−Tr(J(E2))λ+det(J(E2)) = λ2+− r
k
·α+ µ+ c

β
·λ+

βk(r − c)− r(α+ µ+ c)

βk
·(α+µ+c)
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quindi gli autovalori sono

λ1,2 = −r(α+ µ+ c)

2βk
±

√
r2(α+ µ+ c)2

4β2k2
− βk(r − c)− r(α+ µ+ c)

βk
· (α+ µ+ c)

Per capire se questi sono reali o complessi dobbiamo studiare il segno di
∆

4
:

∆

4
=
r2(α+ µ+ c)2

4β2k2
−βk(r − c)− r(α+ µ+ c)

βk
·(α+µ+c) ≥ 0 ⇐⇒ c ≥ r·4β

2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk

Dunque se vale l’ultima condizione otteniamo due autovalori reali distinti negativi

λ1 = −r(α+ µ+ c)

2βk
+

√
r2(α+ µ+ c)2

4β2k2
− βk(r − c)− r(α+ µ+ c)

βk
· (α+ µ+ c)

λ2 = −r(α+ µ+ c)

2βk
−

√
r2(α+ µ+ c)2

4β2k2
− βk(r − c)− r(α+ µ+ c)

βk
· (α+ µ+ c)

DunqueE2 risulta un nodo asintoticamente stabile per r·βk − (α+ µ)

r + βk
> c > r·4β

2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk
.

Le traiettorie convergeranno ad esso tangenti alle rette passanti per il punto con direzione data
dall’autospazio

E(λ2) = span

{(
1,
βk(r − c)− r(α+ µ+ c)

(r + βk)λ2

)}
relativo all’autovalore minore in modulo.
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Figura 10: Diagramma per E2 nel caso c > r · 4β2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk

Per c = r · 4β2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk
otteniamo due autovalori negativi coincidenti

λ1,2 = λ = −r(α+ µ+ c)

2βk
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con molteplicità geometrica inferiore di quella algebrica, dunque E2 è un nodo ad una tangente
asintoticamente stabile. Le traiettorie sono tangenti alle rette con direzione date dall’autospazio

E(λ) = span

{(
1,
βk(r − c)− r(α+ µ+ c)

(r + βk)λ

)}
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Figura 11: Diagramma per E2 nel caso c = r · 4β2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk

Se 0 < c < r · 4β2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk
abbiamo due autovalori complessi coniugati con

parte reale negativa

λ1,2 = −r(α+ µ+ c)

2βk
± i

√
βk(r − c)− r(α+ µ+ c)

βk
· (α+ µ+ c)− r2(α+ µ+ c)2

4β2k2

dunque E2 è un fuoco asintoticamente stabile. Le traiettorie saranno spirali che si avvolgono
attorno al punto.
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Figura 12: Diagramma per E2 nel caso 0 < c < r · 4β2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk
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Figura 13: Zoom del diagramma di fase per E2 nel caso 0 < c < r · 4β2k2 − (α+ µ)(4βk + r)

r2 + 4β2k2 + 4rβk
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Biforcazioni

Quando il parametro c assume valore c0 = r, l’equilibrio O coincide con il nuovo equilibrio (che
esiste distinto da questo per c > c0), E1, e si destabilizza.

Quando il parametro assume valore c1 = r · βk − (α+ µ)

r + βk
l’equilibrio E1 coincide con E2 (che

esiste distinto per c > c1) e si destabilizza.

Per c > c0 esistono solo l’equilibrio O che risulta essere stabile.
Per c0 < c < c1 esistono gli equilibri O, instabile, e E1, stabile. Per c0 l’origine interagisce con
E1 il che comporta uno scambio di stabilità.
Per c = c1 nasce un nuovo equilibrio E2, che coincide con E1. L’interazione con esso comporta
nuovamente uno scambio di stabilità. Infatti per 0 < c < c1 l’equilibrio E1 si destabilizza e E2

risulta asintoticamente stabile.

Per capire se siamo in presenza di una biforcazione, ie se avviene un cambio nella topologia
delle orbite del sistema, e di quale tipo, consideriamo il campo vettoriale f(S, I, c) con parametro

di controllo c e proviamo a studiare la matrice Jacobiana nel punto (S0, I0, c0) = (
k(r − c0)

r
, 0, c0):

le biforcazioni locali, infatti, sono svelate dalla matrice Jacobiana valutata nei punti critici.

f((S, I), c) =
rS(1− S + I

k
)− βSI − cS

βSI − (α+ µ+ c)I

Verifichiamo le condizioni per la presenza di una biforcazione locale stazionaria semplice
transcritica supercritica per c = c0 = r; ricordiamo che in questo caso E1 coincide con O.

1. f((0, 0), r) =
r0(1− 0 + 0

k
)− β0k0 − c0

β0k − (α+ µ+ r)0
=

0
0
.

2. Jf((0, 0), r) =
0 0
0 −(α+ µ+ r)

ha rango 1 ≤ n− 1 = 2− 1 = 1.

3. [Jf((0, 0), r) | ∂f
∂c

] =
0 0 0
0 −(α+ µ+ r) 0

ha rango 1 < n = 2.

4. Il punto (S0, c0) nel diagramma di biforcazione (ottenuto andando a rappresentare la prima
componente del punto di equilibrio Seq in funzione di c) è punto di intersezione di due rami,
nessuno dei quali ha tangente verticale.

5. Per ogni valore del parametro del controllo esiste almeno un attrattore.

Da 1., 2., 3 otteniamo che la biforcazione è stazionaria semplice, da 4. che è di tipo transcritico
e da 5. che è supercritica.
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Figura 14: Diagramma di biforcazione per k <
α+ µ

β

Verifichiamo ora per il valore critico c = c1. Andiamo a controllare se sono rispettate le con-
dizioni affinché sia presenta una biforcazione locale stazionaria semplice transcritica supercritica

1. f((
α+ µ+ c1

β
,
k(r − c1)
r + βk

− r(α+ µ+ c1)

β(r + βk)
), c1) =

rS1(1−
S1 + I1
k

)− βS1I1 − cS1
βS1I1 − (α+ µ+ c1)I1

=
0
0
.

2. Jf((S1, I1), c1) =
−r (α+ µ) + r

r + βk
2r

0 0
ha rango 1 ≤ n− 1 = 2− 1 = 1.

3. [Jf((S1, I1), c1) |
∂f
∂c

] =
−r (α+ µ) + r

r + βk
2r

k(α+ µ+ r)

r + βk
0 0 0

ha rango 1 < n = 2.

4. Il punto (S1, c1) nel diagramma di biforcazione è punto di intersezione di due rami, nessuno
dei quali ha tangente verticale.

5. Per ogni valore del parametro del controllo esiste almeno un attrattore.

Da 1., 2., 3 otteniamo che la biforcazione è stazionaria semplice, da 4. che è di tipo transcritico e
da 5. che è supercritica.
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Figura 15: Diagramma di biforcazione per k >
α+ µ

β

Come possiamo osservare dal diagramma di biforcazione, l’equilibrio O è stabile per c > c0,
instabile altrimenti, E1 è stabile per c1 < c < c0, instabile per 0 < c < c1 valori per cui esiste
E2, che è stabile.

E’ opportuno osservare che non potremo mai ottenere biforcazioni di Hopf per via della
struttura della Jacobiana calcolata nei punti di equilibrio. Infatti le ipotesi del teorema di Hopf
non vengono rispettate, in quanto in nessun caso la matrice presenterà una coppia di autovalori
semplici immaginari (del tipo λ(c0) = ±iβ) e nessun altro autovalore con parte reale nulla.

Confronto col caso c = 0

Confrontiamo adesso i risultati ottenuti con quelli del modello in cui viene considerato un tasso
di abbattimento c = 0, andando a vedere quali diversi scenari sono possibili in questo caso.

• Consistenza del modello
Il modello risulta consistente anche in assenza dell’abbattimento non selettivo, in virtù del
fatto che S = 0 e I = 0 sono ancora soluzioni e garantiscono che il primo quadrante del
piano (S, I) sia un insieme invariante.

• Equilibri
Ci sono ancora tre punti stazionari:

– L’origine O del piano (S, I) è ancora un punto di equilibrio ed esiste per ogni scelta
dei parametri per cui risulta una sella instabile.

– L’equilibrio che rappresenta la sopravvivenza del solo compartimento dei suscettibili
è leggermente modificato. Il valore al quale si stabilizza il compartimento S non è più
k(r − c)

r
, ma è determinato unicamente dalla capacità portante e risulta maggiore:

E′1 = (k, 0). Può esistere ⇐⇒ k <
α+ µ

β
, cioè se la capacità portante moltiplicata

per il tasso di infezione è inferiore al tasso di mortalità indotto dalla malattia e dalla
mortalità naturale.
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– L’equilibrio di coesistenza è E′2 =

(
α+ µ

β
,
r

β
· βk − (α+ µ)

r + βk

)
. Esso può esistere ⇐⇒

k >
α+ µ

β
.

• Stabilità degli equilibri
In questo caso l’origine, che rappresenta l’estinzione totale della popolazione, non risulta
mai stabile.
La natura degli altri equilibri non varia, anzi notiamo come la condizione aggiuntiva,
affinché esista E2, derivi direttamente dal modello in assenza di abbattimento.

• Biforcazioni
L’assenza di un tasso di abbattimento c porta alla scomparsa di una biforcazione, quella
per c = c0 in quanto l’origine rimane, per ogni scelta dei parametri, instabile.
Inoltre, come è ovvio, il grafico di biforcazione non risente del parametro c e lo studio degli
equilibri e della stabilità può essere fatta sul parametro k. Come già evidenziato esso risulta
fondamentale anche nel caso c 6= 0.
E’ comunque presente uno scambio di stabilità tra E′1 e E′2 nel caso k = k0 che dà origine
ad una biforcazione locale stazionaria semplice transcritica supercritica.


