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Presentazione del Modello

Di seguito analizzeremo il modello epidemiologico che descrive 'evoluzione di un’epidemia di
peste suina in una popolazione di cinghiali.

Quest’ultima ¢ divisa in due compartimenti: quello dei SUSCETTIBILI, che indicheremo con
la lettera S, costituito dai cinghiali che possono contrarre la malattia, e il compartimento degli
INFETTI, denotato con la lettera I, composto da coloro che hanno contratto la peste e possono
trasmetterla.

Nel modello verranno considerate le dinamiche demografiche all’interno di una popolazione: il
numero di suscettibili S puo crescere per la nascita di nuovi individui (supposti non immuni alla
malattia, né vaccinati) e puo decrescere, oltre che per la peste, che causa ovviamente il passaggio
al compartimento degli infetti, anche per la mortalita naturale; allo stesso modo il numero di
infetti I puo decrescere, oltre che per le morti dovute alla malattia, anche per le morti naturali.
Si considera inoltre la possibilita di abbattere in modo non selettivo alcuni capi di bestiame, che
quindi comporta la possibilita di decrescita per entrambi i compartimenti, in modo da contrastare
la diffusione dell’epidemia.

Le equazioni del modello

Di seguito presentiamo le leggi di bilancio per il compartimento dei suscettibili e per quello degli
infetti. Le numerosita dei due compartimenti verranno indicate con S e I, rispettivamente.

e SUSCETTIBILI

Per descrivere ’evoluzione degli individui del compartimento S, introduciamo un termine
di crescita analogo a quello del modello di competizione esclusiva. Esso modellizza il regi-
me di competizione intraspecie e interspecie che viene ad instaurarsi fra gli individui del
compartimento S, sia con quelli dello stesso gruppo, che con quelli di I, per ottenere le
limitate risorse disponibili.

Introduciamo la capacita portante k (con k > 0), definita come il numero massimo di indi-
vidut di una popolazione che possono vivere in un determinato ecosistema, compatibilmente
con le limitate risorse disponibili. Essa rappresenta il livello di sfruttamento ottimale del-
I’ambiente in cui la popolazione vive e puod essere quindi interpretata come numero di posti
occupabili. Dal momento che la funzione di crescita di tipo logistico ¢ della forma

numero di posti disponibili

numero di posti occupabili

tenendo conto della presenza di entrambi i compartimenti, il numero di posti che si possono

occupare ¢ k, e quello dei disponibili ¢ k£ — (S + I). Dunque il termine logistico assume la

S+1
seguente forma 1 — i

k

Avremo per S un termine di crescita del tipo

S+1
r-S-(1—-=21=
(-2
dove il parametro r, detto tasso netto di crescita, & definito come r := v — u, che sono

rispettivamente il tasso di natalita e quello di mortalita naturale, entrambi positivi.

Il compartimento S puo decrescere, oltre che per la mortalita naturale e per la competizio-
ne, anche per l'infezione.



3
Il termine di infezione (termine di perdita per S), viene scelto proporzionale al numero di

incontri binari fra animali dei due compartimenti, descritto da S - I.

Il termine di infezione per S sard quindi
—B-S-I
dove il parametro § > 0 rappresenta il tasso di infezione.

Il compartimento S puo decrescere anche a causa dell’abbattimento non selettivo, model-
lizzato con un termine di perdita proporzionale al numero di individui di S.

Il termine di rimozione (di abbattimento) per S sara allora
—c-S

dove ¢ > 0 indica il tasso di abbattimento.

La legge di bilancio per il compartimento dei suscettibili avra la seguente forma:

ds S+1
=S - ")~ BST S (1)

INFETTI
Per descrivere I’evoluzione degli individui del compartimento I, osserviamo che questo puo
crescere solo a causa dell’infezione, che comporta il passaggio degli individui dal compar-
timento dei suscettibili a quello degli infetti. Introduciamo percié un termine di infezione
analogo a quello per il primo compartimento, stavolta di guadagno per il compartimento
degli infetti.

Il termine di infezione per I sara quindi

Bg-S-1

dove il parametro 5 > 0 rappresenta il tasso di infezione.

Il compartimento I pud decrescere sia a causa della mortalita naturale, che a causa di
quella indotta dalla malattia. Sard necessario percido introdurre un termine di perdita,
proporzionale al numero di individui di 1.

Il termine di mortalita per I sard quindi
—(a+p)-1

dove il parametro o > 0 rappresenta il tasso di mortalita indotto dalla malattia, il parame-
tro p > 0 quello di mortalita naturale.

Infine il compartimento I pud decrescere anche a causa dell’abbattimento non selettivo,
modellizzato, come prima con un termine di perdita proporzionale al numero di individui



di I.

Il termine di rimozione (di abbattimento) per I sara allora
—c-I

dove ¢ > 0 indica il tasso di abbattimento.

La legge di bilancio per il compartimento degli infetti assumera percio la forma:

dI
= BSI—(a+u+ol (2)

Il modello viene descritto quindi dalle seguenti equazioni

I
25 _ea- 2 g1 s

d g (3)
EzﬁS[—(a—i-u—i-c)I

Studio qualitativo del modello con ¢ # 0

Studiamo qualitativamente il modello nel caso si adoperi I’abbattimento non selettivo dei capi
di bestiame per prevenire il dilagare dell’epidemia.

Consistenza

Ricordiamo che un modello matematico viene detto consistente se, a partire da dati iniziali po-
sitivi, le soluzioni si mantengono positive V ¢ > 0.

Per far vedere la positivita delle soluzioni a partire da dati iniziali positivi (e nel nostro caso lo
sono dal momento che rappresentano la numerosita iniziale di compartimenti di una popolazione
di cinghiali), osserviamo che il primo quadrante del piano (S, ) ¢ un insieme invariante.

S = 0 ¢ soluzione. L’asse I, di equazione S = 0, e in particolare il semiasse positivo
{(0,1) | I > 0}, & quindi una traiettoria particolare (verticale) e non puo essere attraversato
poiché le traiettorie, per il teorema di esistenza e unicita delle soluzioni a un problema di Cau-
chy, non possono intersecarsi.

S=0= 5 =0, quindi S(t) = S(0) =0V ¢t > 0 e la popolazione dei suscettibili si mantiene
costantemente nulla. In tal caso I' = —(a + pu + ¢)I = I(t) = Ipe~(@Frtol,

Analogamente, dato che I = 0 é soluzione, 'asse S di equazione I = 0 e in particolare il
semiasse positivo {(S5,0) | § > 0} ¢ una traiettoria orizzontale e non pud essere attraversato.
I =0= 1 =0, quindi I(t) = I(0) = 0 V ¢ > 0 e la popolazione degli infetti si mantiene
costantemente nulla.

Il primo quadrante del piano (S, ), dal momento che i semiassi positivi S e I non possono
essere attraversati essendo particolari traiettorie, risulta invariante. Cid comporta che, a partire
da dati iniziali positivi Sy > 0, Iy > 0, le soluzioni si mantengono positive per ogni istante dello
studio, cioe S(t) >0, I(t) >0V ¢>0.

Ne concludiamo quindi che il modello é consistente.



Equilibri

Per individuare i punti di equilibrio, procediamo annullando il campo vettoriale f = (f1, f2)7

1
dove f1:rS(l—S%)—ﬁIS—cSefg:ﬁIS—(a—i—,u—l—c)I.

— _SH+I _ _ ___r k(r —c)
fi=0 <= S[r(1 - )=Bl+c=0 < S=0VI= T+5k5+ e

a+p+c
7/3 .

Combiniamo quindi i valori di S e di I per cui si annullano entrambe le componenti del campo
vettoriale.
Per S = 0 si annulla la prima componente, e in tal caso la seconda si annulla solo per I = 0.
Quindi O = (0,0) ¢ un punto di equilibrio.

fo=0 < IBS—(a+pu+c)]=0<«= I=0VS=

S
Per I = 0 si annulla la seconda componente del campo f. La prima diventa S(r — % —¢), che
k(r —
si annulla per S = 0, valore per cui ritroviamo ’origine O del piano (S,I), o per S = M
T

Quindi (M, 0) & un secondo punto di equilibrio.
r

Per S = atpte si annulla la seconda componente e la prima risulta nulla <=
a+p+c r+ Bk k 1 k r
B r TCJrk r+ Bk (r—c) ﬁk(a+u+c)

Gli equilibri risultano quindi essere:

e O = (0,0), che rappresenta la scomparsa totale della popolazione;
o« B, = (M

,0), che rappresenta l’assenza di infetti e lo stabilizzarsi della popolazione
r
dei suscettibili;

at+pu+c k
I5] "r+ Bk
di suscettibili e infetti.

o [ = (r—c)

r
- h ta 1 ist
"Bk (a4 p+ c)>, che rappresenta la coesistenza

Affinché questi equilibri esistano, € necessario che ciascuna delle loro componenti sia non negati-
va, dal momento che il loro significato é quello di valori di numerosita dei compartimenti di una
popolazione.

L’equilibrio O esiste per ogni scelta dei parametri positivi (tc r sia positivo), come da ipotesi
su di essi.
L’equilibrio F4 esiste per ¢ < r.
L’equilibrio E5 ha una prima componente positiva per ogni scelta dei parametri, mentre, perché

—Bk—(a—i—,u) echek>7(a+’u).

r+ Bk 15}

lo sia la seconda, é necessario che 0 < c < r

Ricapitolando:

e il primo equilibrio esiste sempre.



e se ¢ > r & presente anche Fj.

Bk — (a+ ) (o + mu)
“aae T

eperO<c<r esiste anche un terzo equilibrio distinto dagli

altri due, Fjs.

Bk — (o + p)

otteniamo che
r+ Bk

Osserviamo che per ¢ = r I'equilibrio F; coincide con O. Per ¢ = r

gli equilibri F; ed E» sono coincidenti.

Osservazione: il modello riesce a descrivere una situazione in cui, all’equilibrio, siano pre-
senti contemporaneamente suscettibili e infetti. Possiamo dire dunque che il modello descrive
nell’ipotesi di esistenza per F5 una malattia che si endemizza.

Isocline e direzione del campo nel piano (S, 1)

La 1-isoclina ¢ il luogo dei punti a tangente verticale e si trova annullando la prima componente
del campo vettoriale, f.

_ S+1 _ _ B T k(r —c)
fi=0 <= S[r(1 Z )=Bl+c =0 < S=0VI= TS +r+ﬁkz'

Quindi otteniamo la traiettoria verticale S = 0 e la retta di equazione

r k(r—c)
J=— .S 4
r+ Bk t5 + Bk (4)
che ha pendenza negativa pari in modulo a " < 1 passante per i punti | 0 M e
p g p Bk +r p p p ’ﬁk+r

(2)

La 2-isoclina é il luogo dei punti a tangente orizzontale e si trova annullando la seconda
componente del campo vettoriale, fs.
a+pu+c
— 5

Quindi otteniamo la traiettoria orizzontale I = 0 e la retta verticale di equazione

fo=0 <« IBS—(a+p+c)]=0 <« I=0VS=

a+p+c
S=—7"-—— 5
5 (5)
Studiamo la direzione del campo nel primo quadrante
S+1 r r—c
0 Slr(l— ———)—pI — 0 I < — S
fi>0 < Sr( ’ =Bl —c] >0 <= I< Bkt v + "+ Bk

essendo S >0e

a+p+c

fo>0 <= IBS—(a+p+c)]>0 <= S> 5

essendo I > 0.
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Il campo & quindi diretto verso destra al di sotto della retta (4), verso sinistra sopra di essa;
¢ diretto verso l'alto a destra della retta (5), verso il basso alla sua sinistra.

Sappiamo che i punti di equilibrio coincidono con i punti di intersezioni fra le isocline rap-
presentate nel piano (S, I) e in particolare vogliamo soluzioni che abbiano componenti positive
o al pitt nulle in quanto S e I indicano la numerosita dei due compartimenti. Dai grafici per le
isocline notiamo in maniera pitt immediata come il numero di equilibri vari a seconda del valore
del parametro c.

Ez

¥*

kE—(a
Figura 1: Isocline nel caso ¢ < rw
r+ Bk
I
WEJ
? M atute S
E—
Figura 2: Isocline nel caso ¢ > rw
T+ Bk

Stabilita degli equilibri

Studiamo la stabilita degli equilibri trovati mediante linearizzazione, con il primo metodo di
Liapunov.
A tale scopo calcoliamo la matrice Jacobiana del sistema:

T T T
H(S.1) = r=2.S—( +MI—c 1 S-pS
BI BS — (a+ p+c)
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e valutiamola nei tre punti di equilibrio trovati, studiando per ciascuno di essi il segno della parte
reale degli autovalori della matrice.

Per 'equilibrio O = (0,0) troviamo

r—c 0

Je0,0) =" —(a+p+ec)

che é una matrice diagonale. Gli autovalori si trovano dunque sulla diagonale e sono r — ¢ e
—(a+p+c) <.

Se ¢ > r abbiamo che entrambi gli autovalori sono negativi e dunque O & un nodo asintotica-
mente stabile.

Se ¢ < r gli autovalori sono reali discordi (esiste E1) e dal primo metodo di Liapunov si conclude
che O ¢ una sella instabile.

Se ¢ < r esiste l'equilibrio E] = (m, 0) e troviamo
r
k
k(r—c - —(r —¢e)(1 Bk
Jf(Q,O): r+c (r—o(1+ r)
r 0 Bk(r—c)— (a+ p+c)

che é una matrice triangolare superiore. Gli autovalori si trovano dunque sulla diagonale e sono

(Bk — (a+ )
r+ Bk '

Gli autovalori sono quindi reali negativi nel caso in cui r > ¢ >

—r+c<0epfk(ir—c)—(a+p+c) <0 < c> "

r(Bk — (a+p))

r+ Bk
non esistono altri equilibri oltre a O ed E;, mentre sono reali discordi nel caso in cui 0 < ¢ <

k—
r(8 _:Z lj 1) (ovvero quando esiste anche Es, a condizione che k > a—g,u) Nel primo caso
r

F4 é asintoticamente stabile, nel secondo una sella instabile.
r(Bk—(atp) . atu

, cioé se

Sel <c< T Bk , esiste l'equilibrio
a+u+c k r
Ey = . — -
= (P -0 - et o)
e troviamo
roatp+tc _r—i—ﬁk'a—{—u—%—c
_ k B k B
Je(En) = Bk(r—c) —r(a+p+c)
0
r+ Bk
Studiamo la traccia e il determinante della Jacobiana.
__r.afpre
Tr(Je(Eq)) = ? 3
a+pu+c
det(Je(Ea)) = === [Bk(r = &) = r(a+ it o)

Il criterio di Routh-Hurwitz in dimensione 2 afferma che se Tr(Je(E2)) <0 A det(Jg(E2)) > 0
allora I'equilibrio F é asintoticamente stabile.
La traccia é negativa per ogni scelta dei parametri, mentre il determinante ¢ positivo se e solo

r+ Bk

asintoticamente stabile.

, cioé se e solo se I'equilibrio Fs esiste. Ovvero se esiste, Fo &



Quindi 'equilibrio O é stabile per ¢ > r e instabile altrimenti.

k—
F; é asintoticamente stabile se e solo se rw
r+ Bk

Bk — (a+ ) a+
3ok °FT T3

< ¢ < r, cioé se non esiste Fy, mentre

& instabile nel caso in cui ¢ < r

FE5 quando esiste ¢ asintoticamente stabile.

Se ¢& presente solo O come equilibrio, esso ¢ stabile. Nel caso in cui siano presenti i primi
due equilibri, 'origine si destabilizza quando interagisce con FE7, con cui coincide per ¢ = r,
ed Ej risulta asintoticamente stabile; nel caso in cui gli equilibri siano tre, l'origine é ancora
instabile, E7 si destabilizza quando interagisce con 'equilibrio F5 con cui va a coincidere per
. Bk — (o + p)

€= r+ Bk

e il nuovo equilibrio Fs risulta asintoticamente stabile.

Simulazioni delle leggi orarie

Andiamo a vedere quali sono le leggi orarie nel caso in cui esista solo l'origine come equilibrio,
a—+

s

nel caso si abbiano due equilibri O ed E; e nel caso k >

in cui esiste anche Es.

—— Suscettibili
ol —— Infetti |

Parametri: r=0.5; k=0.4; b=0.5; a=0.1; m=0.1; ¢c=0.6

04 ]

40 60 80 100 120 140 160 180 200

Figura 3: Leggi orarie nel caso ¢ > r

Se ¢ > r vediamo come la popolazione sia inesorabilmente destinata all’estinzione per via
dell’abbattimento troppo invasivo.
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1
I
—— Suscettibili
i Parametri: r=0.5; k=0.3; b=0.2; a=0.2; m=0.2; ¢=0.2 *I;sztf‘ B
_ (atuto)
08— ] =
07— —
0l i
S(t), 1(t)
os}- -
N 7
\
|
014 -
\\
0 | | | | | | | | |
b 0 “ P w o = ™ - - ™

r(Bk — (a+p))

Fi 4: Leggi ie nel <
igura eggi orarie nel caso T Bk c<r

Nel caso in cui siano presenti due soli equilibri, la malattia ¢ destinata ad estinguersi,
permettendo cosi la crescita della popolazione fino alla capacitd massima k.

—— Suscettibili
—— Infetti
09 ___(atpte)

]

Parametri: r=0.5; k=0.6; b=0.2; a=0.05; m=0.05; ¢=0.014516 kim0 - Ip(atpto)

08— —

Se & ammissibile anche I'equilibrio E5, siamo nella condizione di coesistenza con la malattia
che non scompare, ma rimane presente nella popolazione.



11
Andamento delle traiettorie di fase intorno agli equilibri
Equilibrio O = (0,0)

Consideriamo ’equilibrio O = (0, 0), che risulta essere un nodo asintoticamente stabile se ¢ > r
e una sella instabile per ¢ < r. Per capire come sono fatte le varieta stabile W*° (O) e instabi-
le WY(0) dell’origine, andiamo a studiare quelle del problema linearizzato intorno all’origine.
Queste sono gli autospazi relativi rispettivamente all’autovalore negativo [—(« 4+ u + ¢)] e all’au-
tovalore positivo r — ¢ e risultano tangenti alle varieta stabile e instabile dell’origine del problema
non lineare.

L’autospazio relativo all’autovalore negativo, E(—(a + p + ¢)), si trova risolvendo J¢(O) -
(S, )T = —(a+p+c)(S,I)T, cioe

r—c 0 1S — (atpto)-
0 —(a+p+e)||I]| H

S
z

Si ottiene E(—(a+ p+c)) = {(S,1)|S = 0}, cio¢ I'asse I. Essendo questa una traiettoria, la
varieta stabile del problema linearizzato non solo é tangente a quella del problema non lineare,
ma coincide con essa e rappresenta il luogo di punti dal quale é possibile raggiungere 1’equilibrio
instabile (0, 0). Cio é ragionevole in quanto implica che I'estinzione totale possa essere raggiunta
soltanto a partire da una popolazione composta interamente da individui infetti, che puo solo
decrescere a causa della mortalita, naturale, indotta dalla malattia o dall’abbattimento non se-
lettivo.

L’autospazio relativo all’autovalore positivo E(r — ¢), si trova risolvendo J¢(O) - (S, I)T =
(r—c)- (8,17, cioe
r—c 0 S S
0 —(atuto||1]70 71

Si ottiene E(r —¢) = {(S,I)|I = 0}, cioé l'asse S, che essendo una traiettoria, non solo &
tangente alla varieta instabile di O del problema non lineare, ma coincide con essa.

Diagramma di fase per il modello SI con demografia

Parametri: r=0.05; k=0.6; b=0.5; a=0.2; m=0.1; c=0.1

Figura 6: Diagramma di fase nel caso ¢ > r
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Equilibrio F} = (——=

k(r—c
Consideriamo ora l'equilibrio Ey = (g, 0) nel caso in cui risulta asintoticamente stabile,
T
Bk — (o + p)
r+ B8k
Come abbiamo visto nello studio della matrice Jacobiana valutata in E7, i suoi autovalori sono

—r+c<0epk(r—-c)— (a+ pu+c) e, sotto queste condizioni per il parametro ¢, risultano
entrambi reali negativi, percio ’equilibrio ¢ un nodo asintoticamente stabile.

Nel caso in cui gli autovalori sono distinti, 7 é un nodo a due tangenti e le traiettorie che
convergono all’equilibrio, sono tangenti nel punto all’autospazio relativo all’autovalore minore in
modulo. Analogamente a quanto visto prima, 'autospazio relativo a —r-+c si individua risolvendo

cioer >c>r

#(Mif@ﬁ>«&nT=@w+@.wJF

cioe
—r+c —(r—c)(l—i—%)

. =(-r+c)- S
0 Bk(r —c) — (a4 p+c) I

f

mentre quello relativo a [Sk(r — ¢) — (o + p + ¢)] risolvendo

Jr <k‘(7“r—c)’0> '(S,I)T: (ﬁkj(r—c)—(a—f—u—f—c))-(s,I)T

Bk
—r+c —(7’—0)(1"‘7) .?:(ﬁk(r—c}—(a—i-/i—i-C))-f.
0 Bk(r —c) — (a4 p+c)

Si ottiene cosi E(—r +¢) = {(S,I)|[I =0} e

EBk(r—c)—(a+p+c) = span{(L_(l _ (Oz+lt+c)r)))}

(r+pBk)(r—c
. . . . . . k(r —c) .
Imponendo il passaggio della generica retta di ciascun autospazio per il punto (————=,0), si
r
ottengono rispettivamente le tangenti
I=0,
cioé l'asse S, e la retta
(a+p+c)r r—c a+ptc

I=—(1—-——F—-"-)S+k — . 7
( (?"—I—Bk)(r—c)) ( r r + Bk ) 9

Bk +r— (a+p)

2r + Bk
modulo, le traiettorie convergono a E; tangenti all’asse S ().

Nel caso quindi in cui r > ¢ > r , cioé l'autovalore (—r 4+ ¢) ¢ il minore in
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Parametri: r=0.1; k=0.7; b=0.5; a=0.2; m=0.1; ¢=0.013333

r(Bk — (a+p))

Figura 7: Leggi orarie nel caso 0 < ¢ < "t Bk
k - k—

Nel caso in cui rﬁ +2: +(BO;<3+ 2 >c > TW, cio¢ 'autovalore (Bk(r —c¢) — (a +
i+ ¢)) ¢ il minore in modulo, arrivano a F; tangenti alla retta (7). Tale retta ha pendenza ne-
gativa e minore di 1 in modulo, infatti il coefficiente angolare & —(1 — latputor ) <0 —

(r+pBk)(r—c)
k —
latputor <l <<= ¢c> 7“/8 tr-(o+ ,u)’ ovvero nelle ipotesi in cui ci siamo messi.
(r+Bk)(r—c) 2r + Bk

Parametri: r=0.5; k=0.6; b=0.6; a=0.01; m=0.01; ¢c=0.2

02—

k—
Figura 8: Diagramma nel caso r > ¢ > r(f +((; ]:_ 1) con tangente al punto pari a (7)
r

k+r—(«a
Se invece ¢ = rﬁ +2 n (ﬂ k:+ 2 , allora i due autovalori sono reali negativi coincidenti con
r
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molteplicita geometrica minore di quella algebrica, percid Ej risulta essere un nodo ad una
tangente asintoticamente stabile. Infatti 'autospazio E(—r) = span{(1,0)} ha dimensione 1 ed
¢ ancora parallelo all’asse S. Imponendo il passaggio per (k, 0) troviamo che la tangente ¢ I’asse S.

Parametri: r=0.5; k=0.6; b=0.6; a=0.01; m=0.01; c=0.30882

Bk +1—(a+ p)
2r + Bk

Bk — (a + p)

r+ Bk
calcoliamo, analogamente a quanto fatto per 'origine, le tangenti alle varieta stabile e instabile

studiando gli autospazi del problema linearizzato intorno a Fj.

Sfruttando i calcoli del passaggio precedente, I’autospazio relativo all’autovalore —r +c¢ < 0
¢ E(—r+c¢) ={(S,I)|I =0}, cioé 'asse S che, essendo una traiettoria, non solo & tangente alla
W*(F1), ma coincide con essa.

L’autospazio relativo all’autovalore positivo é

Figura 9: Diagramma nel caso ¢ = r con tangente all’asse S

Consideriamo adesso E7 nel caso ¢ < r nel quale risulta una sella instabile e

(a+p+or )3
(r+ Bk)(r —c)
e imponendo il passaggio della generica retta per il punto (k,0), si ottiene ancora una volta la

(7), con pendenza negativa.
WVY(Ey) risulta quindi tangente alla retta ottenuta in (7).

E(Bk(r—c) — (a+ p+c)) = span{ (1, —(1-

a+p+c k
B "r+ Bk

Equilibrio Ey = < (r—rc)— é(a +p+ c))
Bk — (o + )
r+ Bk
stabile. Per capire quale ¢ la sua natura, andiamo a studiare gli autovalori della matrice Jacobiana

per capire se questi sono reali negativi, distinti o coincidenti, o complessi coniugati con parte

Nel caso in cui tale punto stazionario esista, e cioé ¢ < r , esso risulta asintoticamente

reale negativa.
Il polinomio caratteristico per la matrice Jacobiana é dato da
_zla—i-/ub—i-c.)\_i_ﬂk(r— c)—r(a+p+c)
k I3 Bk

p(\) = N2=Tr(J(Ey)) A +det(J(Ey)) = A2+ (a+p+e)
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quindi gli autovalori sono

)\1’2:— ‘(CM‘F,M‘FC)

r(oa+p+c) L r?(a+ p+ c)? _ Bk(r—c) —r(a+p+c
28k 152K2 Bk

Per capire se questi sono reali o complessi dobbiamo studiare il segno di Z:

43%k% — (a + p)(4Bk + 1)
r2 + 4532k2% + 4r Bk

A r2(a+u+c)2_ﬁk(r—c)—r(a—l—u—}—c)

4 4522 Bk

(atpte) >0 <= c>1r

Dunque se vale 'ultima condizione otteniamo due autovalori reali distinti negativi

rla+p+c) r2(a+p+c)?  Bk(r—c)—r(a+p+c)
A = — _ .
1 28k ¢ 152K2 Bk (ot ptc)
_ rla+p+c) r2(a+p+e)?  Bk(r—c)—r(a+p+c)
Ao = 25k \/ 1522 B (a+p+c)
k— 48%k* — 4Bk
Dunque FE» risulta un nodo asintoticamente stabile per T-W >c>r 5 o ig;;;j_&f 3 ]:_ ) )

Le traiettorie convergeranno ad esso tangenti alle rette passanti per il punto con direzione data

dall’autospazio
- Bk(r —c) —r(a+ u+c)
E(\) = span{(L (r+ Bk) A2 >}

relativo all’autovalore minore in modulo.

Parametri: r=0.5; k=0.6; b=0.6; a=0.01; m=0.01; c=0.17722

AB%k* — (o + p) (48K + 1)
r2 + 452k2 + 4r Bk

Figura 10: Diagramma per Fy nel caso ¢ > 1 -

46%k* — (o + p)(4Bk + 1)
r2 +4B32k2 4 4r Bk

Perc=r- otteniamo due autovalori negativi coincidenti
r(oa+p+c)

Ao =A=—
1,2 25k
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con molteplicita geometrica inferiore di quella algebrica, dunque F5 ¢ un nodo ad una tangente
asintoticamente stabile. Le traiettorie sono tangenti alle rette con direzione date dall’autospazio

20) :Spcm{(l’ Bk(r — ¢) —r(a—i—u—i—c))}

(r+ Bk)A

Parametri: r=0.5; k=0.6; b=0.8; a=0.01; m=0.01; ¢=0.20482

4B°K? — (o4 ) (48K + 1)
r2 + 452k2 + 4r Bk

Figura 11: Diagramma per Eo nel caso c=r -

48%k* — (oo + p)(4Bk + 1)

Se 0 < e < T T B 1 dr Bk

abbiamo due autovalori complessi coniugati con

parte reale negativa

r?(a+ p+c)?
15°K2

(a+p+c)—

 rlat+ptc) | BR(r—c)—r(a+p+c)
)\1’2—— 25]{? :EZ\/ ﬁk

dunque Fs é un fuoco asintoticamente stabile. Le traiettorie saranno spirali che si avvolgono
attorno al punto.



Figura 12: Diagramma per Fy nel caso 0 < ¢ <

0105

0.095

0,085

0075

Figura 13: Zoom del diagramma di fase per Fy nel caso 0 < ¢ <1 -

Parametri: r=0.5; k=0.8; b=0.6; a=0.01; m=0.01; c=0.18434

Ey

r

4B%K? — (o4 p)(4Bk + 1)

r2 +48%2k% + 4r Bk

17

4%k — (o + p)(48k + 1)

r2 +482k2 + 4rBk
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Biforcazioni

Quando il parametro ¢ assume valore ¢y = r, I'equilibrio O coincide con il nuovo equilibrio (che

esiste distinto da questo per ¢ > ¢p), E1, e si destabilizza.

Bk — (o + )
r+ Bk

Quando il parametro assume valore ¢; = 7 - I'equilibrio Fj coincide con Fy (che

esiste distinto per ¢ > ¢1) e si destabilizza.

Per ¢ > ¢ esistono solo 'equilibrio O che risulta essere stabile.
Per ¢y < ¢ < ¢ esistono gli equilibri O, instabile, e F1, stabile. Per ¢y l'origine interagisce con
F/ il che comporta uno scambio di stabilita.
Per ¢ = ¢ nasce un nuovo equilibrio F», che coincide con Ej. L’interazione con esso comporta
nuovamente uno scambio di stabilita. Infatti per 0 < ¢ < ¢1 'equilibrio E; si destabilizza e Fo
risulta asintoticamente stabile.

Per capire se siamo in presenza di una biforcazione, ie se avviene un cambio nella topologia
delle orbite del sistema, e di quale tipo, consideriamo il campo vettoriale f(.S, I, ¢) con parametro
k(r — co)
) 07 CO):

le biforcazioni locali, infatti, sono svelate dalla matrice Jacobiana valutata nei punti critici.

I
rS(1 — S%) — BSI —cS

BSI — (a+p+c)l

di controllo ¢ e proviamo a studiare la matrice Jacobiana nel punto (Sy, o, co) = (

f((S,1),c) =

Verifichiamo le condizioni per la presenza di una biforcazione locale stazionaria semplice
transcritica supercritica per ¢ = ¢y = r; ricordiamo che in questo caso E; coincide con O.

rO(1 = =) = B0ko — c0

1. £((0,0),r) =
BOk — (v + p+7)0

0+0 0
ol

0 0

2. Jg((0,0),7) = 0 —(a+p+r)

harango 1 <n—-1=2-1=1.

of

3. [Jf((0,0),’I“) | %]

0 0 0
=10 _(a+#+r)0harangol<n—2.

4. 1l punto (Sp, ¢p) nel diagramma di biforcazione (ottenuto andando a rappresentare la prima
componente del punto di equilibrio Sg, in funzione di ¢) ¢ punto di intersezione di due rami,
nessuno dei quali ha tangente verticale.

5. Per ogni valore del parametro del controllo esiste almeno un attrattore.

Da 1., 2., 3 otteniamo che la biforcazione ¢ stazionaria semplice, da 4. che €& di tipo transcritico
e da 5. che é supercritica.
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a—+
&)

Figura 14: Diagramma di biforcazione per k <

Verifichiamo ora per il valore critico ¢ = ¢;. Andiamo a controllare se sono rispettate le con-
dizioni affinché sia presenta una biforcazione locale stazionaria semplice transcritica supercritica

I
| gotita kr-a) rlatpta), oo rsl(l—slz Ly~ BSiL — ¢Sy | _| 0
B r+Bk B(r+ Bk) BSIL — (o + p+ ey 0

_letp)+r

2. Je((S1,1h),c1) = " r+ Bk " harango 1<n—-1=2-1=1.
0 0

of, | _platwtr o | kletptr)

3. [Je((S1, 1), 1) | %]: r+ Bk r+ Bk ha rango 1 < n = 2.

0 0 0

4. 11 punto (51, ¢1) nel diagramma di biforcazione ¢ punto di intersezione di due rami, nessuno
dei quali ha tangente verticale.

5. Per ogni valore del parametro del controllo esiste almeno un attrattore.

Da 1.,2., 3 otteniamo che la biforcazione é stazionaria semplice, da 4. che é di tipo transcritico e
da 5. che é supercritica.
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a—+
&)

Figura 15: Diagramma di biforcazione per k >

Come possiamo osservare dal diagramma di biforcazione, ’equilibrio O é stabile per ¢ > ¢,
instabile altrimenti, F; é stabile per ¢; < ¢ < ¢g, instabile per 0 < ¢ < ¢; valori per cui esiste
FE, che é stabile.

E’ opportuno osservare che non potremo mai ottenere biforcazioni di Hopf per via della
struttura della Jacobiana calcolata nei punti di equilibrio. Infatti le ipotesi del teorema di Hopf
non vengono rispettate, in quanto in nessun caso la matrice presentera una coppia di autovalori
semplici immaginari (del tipo A(¢p) = +if) e nessun altro autovalore con parte reale nulla.

Confronto col caso ¢ =0

Confrontiamo adesso i risultati ottenuti con quelli del modello in cui viene considerato un tasso
di abbattimento ¢ = 0, andando a vedere quali diversi scenari sono possibili in questo caso.

e Consistenza del modello
Il modello risulta consistente anche in assenza dell’abbattimento non selettivo, in virti del
fatto che S = 0 e I = 0 sono ancora soluzioni e garantiscono che il primo quadrante del
piano (S, 1) sia un insieme invariante.

e Equilibri
Ci sono ancora tre punti stazionari:

— L’origine O del piano (S, I) ¢ ancora un punto di equilibrio ed esiste per ogni scelta
dei parametri per cui risulta una sella instabile.

— L’equilibrio che rappresenta la sopravvivenza del solo compartimento dei suscettibili

é leggermente modificato. Il valore al quale si stabilizza il compartimento .S non é piu
k(r—c)

, ma & determinato unicamente dalla capacitd portante e risulta maggiore:

. o+ o s -
E{ = (k,0). Pud esistere <= k < 7'“, cioé se la capacita portante moltiplicata

per il tasso di infezione ¢ inferiore al tasso di mortalita indotto dalla malattia e dalla
mortalita naturale.
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k—
— L’equilibrio di coesistenza ¢ Ef) = (a + #, r. p (o + 1) ) . Esso puo esistere <=
g B r+ Bk
a—+
k> .
g

e Stabilita degli equilibri
In questo caso l'origine, che rappresenta l’estinzione totale della popolazione, non risulta
mai stabile.
La natura degli altri equilibri non varia, anzi notiamo come la condizione aggiuntiva,
affinché esista Fo, derivi direttamente dal modello in assenza di abbattimento.

¢ Biforcazioni
L’assenza di un tasso di abbattimento ¢ porta alla scomparsa di una biforcazione, quella
per ¢ = ¢g in quanto l'origine rimane, per ogni scelta dei parametri, instabile.
Inoltre, come é ovvio, il grafico di biforcazione non risente del parametro c e lo studio degli
equilibri e della stabilita puo essere fatta sul parametro k. Come gia evidenziato esso risulta
fondamentale anche nel caso ¢ # 0.
E’ comunque presente uno scambio di stabilita tra F{ e E) nel caso k = ko che da origine
ad una biforcazione locale stazionaria semplice transcritica supercritica.



