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Abstract

This project comprises of an introduction to Decentralized Finance, its infras-

tructure, and Decentralized Exchanges, as well as an analysis of the various

aspects that impact gains for liquidity providers of the largest Constant Product

Market Makers: Uniswap-V2. A digital twin of the CPMM has been built in

order to undertake simulations and analysis. Data collected directly from

Uniswap has been used to set the initial parameters of simulations to recreate

trading trends that are currently occurring in the market.

Experiments are conducted varying the number of liquidity providers inter-

acting, their initial holdings and tokens tradable. Moreover, the impact of

different trading fees on liquidity providers’ returns has been investigated.

Results show that providing strategically liquidity to pools proves to be a

profitable strategy that yields positive annual returns up to 1%. Experiments

indicate also that the presence of other active providers influences returns to

different extents and in different way. Smaller liquidity providers are seen

to benefit from the presence of wealthier providers, while bigger liquidity

providers are negatively impacted by active providers with similar portfolios.

As expected, gains are directly correlated to pools’ trading volumes, as they are

the source of profit for liquidity providers. This can be seen by the strategies

adopted by providers.
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1
Introduction

In a society that is moving more and more towards globalization, markets

play a crucial role in keeping economies dynamic whilst being accessible from

all around the globe. The Bank for International Settlements has estimated a

notional value of outstanding derivatives of $610 trillion at end of June 2021

[1]. In the same period, the real estate market’s value capped at an estimate

of $280,60 trillion and world’s Gross Domestic Product (GDP) reached a value

of $85 trillion. This data shows that markets have a significant impact and

influence on the global economy, as they contain a huge part of global wealth.

The adoption of computers is another important factor that has contributed

to markets reaching these levels. This aided in speeding up trades because

they can be executed as soon as requirements are met, increasing the total

volume of trades that can be handled. High-frequency trading is one example

of computer-related innovation that is simply not possible in a market where

trades are executed by brokers.

Markets’ centrality is due to the fact that they offer a plethora of financial tools

depending on what sector is taken into consideration. The range extends from

the more sophisticated and complex financial contracts (such as derivatives),

to currency exchange, to stocks and bonds. All of these tools were developed

to fulfill a specific requirement. Consider the following:

• Employee salaries must be paid in different currencies by companies

with offices in different countries.s a result, a foreign exchange market

must be established. Foreign exchange markets reached a daily trading

volume of $6.6 trillion a day in 2019 [4].
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Figure 1.1.: Data shows an estimate of different markets size. Sources: BIS [1], IMF
[2], Statista [3].

• To operate and grow, businesses and governments require a steady

stream of cash. This necessity has led to the creation of bonds: in

order to maintain a consistent cash flow, companies or nations issue

bonds, which provide immediate liquidity while promising investors

future rewards.

• Since capital is needed for future investments, a company aims to go

public and sell assets. Owning an asset is more accurately expressed as

owning a piece of a company, implying that the profit is intrinsic and

determined by the difference between the buying and selling prices.

The cryptocurrency market is one that has grown at an incredible rate. It

reached a valuation of $3 trillion at the end of 2021, only 13 years after the first

cryptocurrency, Bitcoin, was introduced [5]. As more people became involved

in this field, new financial ecosystems were created and improved to allow

these new digital currencies to be exchanged. Decentralized Finance (DeFi) is

a component of the crypto environment (as it can be seen in Figure [1.2]) in

which securities are exchanged peer-to-peer without an intermediary and there

is no centralized entity that adjusts market trends. The DeFi ecosystem includes

2 Chapter 1 Introduction



Figure 1.2.: Comparison of cryptocurrencies market and Decentralized Finance as
per TradingView.

Figure 1.3.: Montly DEXs Volumes. Uniswap has a leading trading volume. Data
collected from Dune.

Decentralized Exchanges (DEXs). Their popularity can be traced back to their

more transparent approach when compared to traditional exchanges and

centralized cryptoexchanges (e.g., Binance), since all information is publicly

accessible. Due to their technical structure, many DEXs have been implemented

with a trading style that differs from the central limit order book: instead of

storing bid and sell prices and operating trades whenever they are met, assets

are stored in pools where prices are algorithmically determined by reserves

of each asset. This type of DEX is known as an Automated Market Makers

(AMMs). As shown in Figure [1.3], Uniswap is the largest AMM in terms

of total value and trading volume at the end of 2021. It is natural to ask

how rewards and prices are determined. There are numerous factors that

can influence price fluctuations and they are not always easily identifiable.

Liquidity is among those factors. Its centrality can be easily seen in Figure [1.4],

where the price of the S&P500 market index is compared to liquidity provided

by the Federal Reserve according to their Balance Sheet. As the S&P500 reflects

3
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Figure 1.4.: Source: currentmarketvaluation.com [6].

market’s trends of the largest companies in the US asset market, it is evident

that in this case a higher liquidity boosts trading volumes that hence increases

assets’ values, setting an overall positive trend. This is due to prices being

determined by the demand-supply ratio. Small price variations are expected if

supply remains stable and capable of meeting demand. If, on the other hand,

there is an imbalance between demand and supply, prices will experience large

fluctuations until an equilibrium is restored. Liquidity is even more important

in the case of AMMs, as it plays a significant role in determining asset prices.

Analyzing the effect of price fluctuations on the wealth of liquidity providers

is critical for a successful AMM. Thus we seek to answer: What key factors
determine LP gains and losses in Uniswap V2? In this thesis, we create a digital

twin of the protocol and recreate trading actions based on empirical data

collected from the protocol.1

1Uniswap V2 was selected over V3, because it is more established and less likely to present
noisy data.
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2Traditional Markets

2.1 Securities

Before discussing the environment and characteristics of DeFi, it is necessary

to briefly discuss traditional financial instruments and markets. The following

section’s definitions and theory are based on [7].

As the term security appears a conspicuous amount of times in financial doc-

uments and literature, a definition of such is required. Accordingly to [7] a

security is defined as a "[...] legal contract representing the right to receive future
benefits under a stated set of conditions". Another possible definition is given by

the the Howey Test1: "an investment of money in a common enterprise with a
reasonable expectation of profits to be derived from the efforts of others"[8]. In

the United States securities are regulated by the U.S. Securities and Exchange

Commission (SEC), while in the European Union this is done by the European

Securities and Markets Authority (ESMA).

Financial securities can be categorized as in diagram [2.1]. One possible way

of differentiating securities is by determining either if the investment requires

an intermediary or not [7]: investors might prefer buying shares of a fund’s

portfolio instead of directly building one by acquiring assets. Amongst the se-

curities that are directly bought, it is possible make a distinction based on their

time horizon: money market instruments (less than one year) or capital market
instruments (more than one year). In addition to those, another category is

derivative instruments, defined this way because the payoff of such financial

securities is derived from prices of a basket of underlying primary assets.

Listing all the different types of securities would go beyond the scope of this

project, hence only securities that will be referred to in later discussions are

presented. These have been identified in:

1The Howey Test refers to the U.S. Supreme Court case for determining whether a transaction
qualifies as a security subject to disclosure and registration requirements
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Figure 2.1.: Categorization of financial securities as presented in [7].

• Treasury bills: they are money market instruments issued by govern-

ments. They are considered to be a riskless investment, since they have

no risk of default,2 known return and a short time horizon.

• Repurchase agreements: contracts between a borrower and a lender to

first sell and then repurchase a specified security (usually one issued by

a government). The return is computed from the difference between

selling and buying prices. Their importance is due to the fact that they

allow short positions3.

• Stocks: they can be divided in preferred stocks and common ones. The

first offers periodic payments (known as dividends), that are promised

but not granted: failed payments are cumulated until the issuer is able

to repay them without calling for a default. Similarly, common stocks

represent an ownership claim on earnings and assets of a company. They

might grant access to dividends after all other shareholders have been

paid, but it is left to management’s discretion. Common stocks are the

riskiest securities amongst those presented.

2a security defaults when it fails to meet contract’s conditions
3short position: when a trader sells a security with the intent of repurchasing it at a lower

price
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2.2 Trading Dynamics

Understanding the dynamics and the different characteristics of trading pro-

cesses is necessary to fully comprehend later on the correlation that exists

between those and liquidity provision.

An investor can either decide to place an order through a brokerage firm or

directly with an exchange. The latter case eliminates the need of any interme-

diary and has become available as a result of the financial sector’s embrace of

electronic devices. Buyers specify the number of assets they want to purchase

as well as a bid price, i.e. the most they are willing to pay for a unit. Sellers,

on the other hand, specify how many assets they are selling and the lowest

price they are willing to accept. If no existing trading meets their require-

ments, these orders are stored in the limit order book until their parameters

are satisfied by a new order or the issuer cancels them. Understanding how

liquidity influences these dynamics and vice versa is then important to conduct

any form of analysis.

Other typologies of trading, apart from the more classical peer-to-peer one

just presented, can occur. An example is the case in which an investor creates

a short position. When adopting a short position traders are selling assets

with the obligation of repurchasing it in the future. In the DeFi environment

this type of trading strategy is made easier thanks to the atomic structure, a

key element of the blockchain technology that will be presented in Section

3. Shorting strategies and all of their implications are a field of research by

themselves. Because of this, further details are not going to be discussed in

this project, but can be found in [7].

Markets, like securities, can be classified in a variety of ways based on their

technical structure, how they operate trades, and the frequency with which

trades are executed, among other factors. The first distinction that can be

made is between primary and secondary markets. Newly issued securities are

sold first in primary markets, then resold in secondary markets. Whatever

category a market belongs to, it must possess the following characteristics:

• trades are made based on information, hence market’s information like

volume, previous prices, bids and offers should be available.

• Low costs for trading in the market.

2.2 Trading Dynamics 7



• It should be liquid. Liquidity is defined as "[...] ability to transact a large
number of shares at prices that don’t vary substantially from past prices
unless new information enters the market" [7].

Having introduced what securities are and where they can be traded, it is

appropriate to try and understand how should an investor construct their

portfolio. Each security that an investor can buy or sell, has an underlying risk

element. Risk is a term used in finance to describe the degree of uncertainty

or potential financial loss associated with a financial decision. For example,

the risky component of owning an asset is caused by fluctuations of stock’s

value. Stock prices fluctuate because they reflect a company’s performance,

soundness, and dependability to investors. A sudden change in one of these

characteristics could result in mass selling, lowering the value of the com-

pany’s assets and impacting negatively investors financial wealth. Similarly,

whenever an investor lends money, the likelihood that the contract might not

be honoured, causing investors to lose the money they provided, measures the

risk of that investing strategy.

From a mathematical standpoint, risk is due to the probabilistic nature of

returns of each security [7]. The more a financial asset’s possible outcomes

(in this case, price variations) are dispersed, the more risk it carries. In 1952

economist Harry Markowitz introduced the Modern Portfolio Theory [9]. Ac-

cording to it investors can build optimal portfolios that maximize expected

return4 for a given amount of risk. Having an efficient portfolio for a set

volatility4 is crucial as each trader might have a different level of risk aversion.

Diversification is another important component of an optimal portfolio that [9]

emphasises. Although diversification cannot eliminate the risky component

of assets, it can help to reduce volatility. This is because assets are likely to

be correlated4 with one another. The significance of Markowitz’s findings can

also be traced back to the fact that they apply to a wide range of scenarios

involving risky assets, risk-free assets, and short positions.

It is understandable that an investor would desire to benefit without taking

any risks. Although it is theoretically feasible to create a portfolio with no risk,

doing so in practise is very difficult. Because it is extremely uncommon that

two assets are negatively correlated. However, there are certain investments

that do not involve any risk but guarantee a reward:

4definitions can be found in A.1
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Definition 2.2.1 An arbitrage is a transaction that involves no negative cash
flow at any probabilistic or temporal state and a positive cash flow in at least one
state [10].

The absence of risk in this strategy is to be ascribed to the fact that investors

do not need to invest their money as no negative flow is recorded. A more

practical definition of arbitrage is "the simultaneous purchase and sale of the
same asset in different markets in order to profit from tiny differences in the
asset’s listed price". It is worth noting that arbitrages are conceivable because

short positions are viable as they allow the sale of assets that are borrowed to

the investor.

2.3 Liquidity Providers

All of the above discussions are possible in settings such that the realization of

a trade will not drastically result in leaps on assets’ prices. In order to achieve

that, markets need to be liquid, both in continuity and depth. Definitions for

these concepts are provided in [7] and are:

Definition 2.3.1 In a market that has liquidity continuity "[...] an investor
can expect to transact some shares at prices close to those at which the security
recently traded"

Definition 2.3.2 A deep market is one in which "[...] a large number of shares
can be transacted without a substantial change in price"

It is clear then that liquidity providers have a central role in making a market

viable. But what is the definition of liquidity provider?

Definition 2.3.3 A liquidity provider is a financial institution that acts as a
middleman in the securities markets. [11]

2.3 Liquidity Providers 9



In practice, providers purchase huge quantities of securities from issuers in

primary markets where minimum trades’ sizes are conspicuous and transfer

them in batches to financial institutions in secondary markets who then make

them available to regular investors [7]. Because of this characteristics liquidity

providers (LPs) are also called market makers.

Opposed to traders, LPs do not seek profit through coupon collection or re-

selling of securities as they are the one that sell and buy the securities necessary

to make those kind of transaction possible in the first place. Nevertheless pro-

viding liquidity entitles LPs of a percentage fees when trades in a market are

completed, as a reward for their commitment to the market. Therefore their

strategy is not directly comparable to traders’ one. Changes in securities’ values

(either increasing or decreasing) imply a loss for LPs, either because they have

not been able to extract all the intrinsic value of a security or because they

hold one that has depreciated. This loss is referred to as impermanent loss. It is

obvious then that it is in markets’ interest to find the optimal settings to attract

both liquidity providers and traders to operate within it. Moreover, providers

enhance many other different strategies that guard them from losing money,

like hedging5.

5A hedge is an investment that is made with the intention of reducing the risk of adverse
price movements in an asset. Normally, a hedge consists of taking an offsetting or opposite
position in a related security.

10 Chapter 2 Traditional Markets



3Decentralized Finance

3.1 Cryptomarkets

As interest in and use of cryptocurrencies grew, so did the demand for plat-

forms where these new assets could be sold and bought (Figures [1.2]-[1.3]).

Numerous exchanges have been set up to allow customers to trade fiat curren-

cies1 for digital currencies. To distinguish them from traditional exchanges,

these markets are referred to as crypto exchanges. They can be divided into

centralized exchanges and decentralized ones. Because they keep digital or-

der books, centralised exchanges (CEXs) work similarly to traditional asset

exchanges like stock exchanges. They are referred to as centralised, since they

are usually owned and managed by companies [13]. Decentralized Exchanges

(DEXs), on the other hand, have a different implementation structure, which

typically is not the order book structure, and they are designed to prevent

direct manipulation or control by system administrators. These features make

DEXs more transparent, which is important to attract investors. CEXs include

Binance, FTX, Coinbase, Kraken, and others, whereas DEXs include Uniswap,

SushiSwap, Balancer, and Curve. The latter are the ones that researchers are

most interested in because they offer an intriguing alternative while also pos-

ing numerous mathematical, financial, and software engineering challenges.

But what are blockchains, cryptocurrencies and their characteristics?

3.2 Bitcoin

Satoshi Nakamoto initially suggested the notion of a peer-to-peer system in

2008, allowing anyone to conduct money transactions in a trustless manner,

eliminating the necessity for intermediaries as in traditional markets [5]. In

Nakamoto’s proposal, the system is shown as a chain of blocks, each containing

1Fiat money is a government-issued currency that is not backed by a commodity such as gold
[12]
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information that is used to generate the next block but also for validating all

previous ones. The system should be run on a large number of computers

each holding a copy of the chain helping to validate and proposing new block.

These computers are also known as nodes in the system. All transactions

should be made public for all nodes to see in order to eliminate the possibility

of duplicate spending on the chain. This means that the transaction history of

a coin can be recorded and compared to the public key wishing to transfer it

to ensure that the public key is the true owner of the coin. A technique known

as Proof-of-Work is used to keep track of time on the chain. This protocol

works by requiring nodes, also known as miners, to perform some amount of

work in order to suggest the next block. Figure [3.1] shows an example of this,

from [5]. As it can be seen, each block contains a variety of data, including a

Previous Hash, a Nonce, and transactions. The Previous Hash value is used to

convert the contents of the previous block and Nonce into a series of numbers

with a specific number of leading zeros. The number of zeros required to make

a valid hash is determined by the chain and is an expression of the difficulty,

or amount of effort, required to win/unlock the next block; each required zero

increases exponentially the amount of work and thus time required to make a

valid hash. When a miner wins a block, the miner broadcasts the new chain;

if this is the longest chain, the block will be added if all transactions in it are

legitimate. This means that in order for someone to alter a previous block,

they must be able to: change the block, redo all of the work done after it,

and propose a new longer chain for approval. A chain attacker would need

significantly more computational power than the other nodes in the chain to

accomplish this. To incentives the running of nodes in the systems miners are

awarded an amount of bitcoin2 every time they win the newest block.

Figure 3.1.: Depiction of a block chain.

2Conventionally, Bitcoin, with a capital b, refers to the technology and the network, while
bitcoin is used for the currency
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3.3 Ethereum

The very same concept of a distributed consensus tool is what gave birth to

the Ethereum chain, which was disclosed in 2014, leading to its launch in

2015 [14]. This is a far more advanced chain architecture that includes a

built-in Turing-complete programming language, value-awareness, blockchain-

awareness, and state. As Ethereum is currently hosting the largest AMM

(Uniswap, as seen in Figure [1.3]), it is important to understand the intricacy’s

of the chain as this can, to some extent, explain how users of AMM’s on

this chain act. This chapter aims, based on Ethereum whitepaper [14], to

introduce these intricacy’s and how that makes AMMs different from the

traditional exchanges.

Block time. On the Ethereum blockchain the block time, i.e. the time it takes

to mine a new block, is expected to be 14 seconds. Although time might

vary from one block to another, on average it is going to be the expected

value: even if nodes’ computational capacities increase the blockchain will

adapt the difficulties to mine new blocks in order to keep a block time of 14

seconds. This means that transactions on the chain can only happen every 14

seconds, differing from the high frequency trending taking place on traditional

exchanges, where algorithms claim to trade in intervals of less then 14ms [15].

Furthermore, each block can only hold a certain number of transactions. Since

these are used not only to execute transactions on AMMs but also by the entire

blockchain community, the number of trades that can be made are greatly

limited when compared to traditional markets. In contrast to conventional

markets, where each order is processed according to the time it is received

by the server, on blockchains miners who win the block are responsible for

building and ordering the block.

Accounts. Ethereum’s state is made of objects called accounts. Accounts can

be divided between externally owned and contract accounts. These accounts

each have a 20-byte address and four distinct fields:

• A Nonce similarly to Bitcoin to make transactions distinguishable.

• A Ether balance containing balance of the accounts balance.

3.3 Ethereum 13



• The storage hold by the account, if any.

• The contract code, in case of contract account’s

External accounts are used by chain users to transmit messages by first gener-

ating and then signing transactions. These messages may include information

that can be used to contact a contract account. Contract accounts, also known

as smart contracts, are pieces of code that may be placed on the blockchain.

This code will then sit and wait for messages before starting its execution.

Gas Fees To execute a transaction, an external account must hold some

Ether as this is the currency that drives the Ethereum Blockchain. Ether is

payed to the miner for their service. This fee is known as gas, which is priced

in gwei with 1 gwei corresponding to 0.00000000106 Ether. The cost of gas

for a transaction is set to be roughly proportionate to the amount of computing

labour required to execute the transaction. In general a computing step costs

1 gwei, but more sophisticated processes have a higher gas cost. Furthermore,

the external account is charged 5 gwei for each byte of data in the transaction.

This concept of gas is employed not only to compensate miners, but also to

avoid strategies that aim to deny access to the service. Because attackers would

have to pay the miners in proportion to the amount of disruption they cause,

major interruptions to the system are prohibitively expensive. However, when

a high number of users are interested in completing transactions, the limited

number of transactions that can be completed in a block causes a bottleneck

in the system. Due to the bottleneck, gas costs rise causing each transactions

to become prohibitively expensive, as seen in Figure [3.2].

Figure 3.2.: Graph of gas price shown in gwei in the period May 1st - May 7th 2022,
as from [16].
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Transactions composition. Moreover, when an external account sends a mes-

sage, this must be properly formatted to be accepted as a transaction. On

Ethereum a transaction is defined as a signed data package including a mes-

sage to be sent. The following five fields, plus an optional sixth, must be

included in a well-written transaction.

• The address of the message recipient.

• The senders signature that identifies them.

• The amount of ether to be transferred from sender to receiver, which can

also be zero.

• A STARTGAS value, restricting the amount of computational steps the

transaction can initiate. It is used as part of the anti-denial of service

model to avoid users from creating infinite loops on purpose or on

accident.

• A GASPRICE with is the amount of transaction fee the senders pay per

computational step.

• An optional data field. This field can be accessed by contract accounts

and parses specific parameters for the computation to respect.

Token standards. The ability to run code on the Ethereum blockchain has

sprouted the development of a wide range of objects known as tokens. A variety

of standards have been established to assure interoperability and simplicity

of integration, into other smart contracts, when generating these token types.

Some of these are standards are:

• ERC-20: a standard for Fungible Tokens. It ensures that each Token has

same exact properties, meaning that every Token is exactly the same as

any other Token and will always be.

• ERC-721: a standard for Non-Fungible Tokens, or NFTs. Tokens im-

plementing this standard are unique to each others and they can have

different values even if originated from the same smart contract.
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• ERC-777: an extension of the ERC-20 standard. That optimize transac-

tions with tokens by allowing these to be approved and transferred in a

single call where it require a double call in the ERC-20 standard

• ERC 1155: a standard for semi-fungible tokens that can combine the

ERC-20 and ERC-721 allowing a single token to use the function of both

Fungible and Non-Fungible Token at the same time.

The ERC-20 is the most common standard for Tokens used in DEXs’ smart

contracts. Nevertheless Tokens may have some different attributes that make

them stand out from other ERC-20 Tokens. An example of such, is the DAI

token, which is known to be a stablecoin. Stablecoins are coins that implement

a form of token minting that helps regulate its price. DAI is regulated to have

a value of almost 1:1 with respect to the US dollar. This type of coins can be

compared to Treasury bills in the traditional market as they have, by design,

a very stable value and hence hold no risk of depreciation. Another ERC-20

Token is WETH. This token is what is called an altcoin. Altcoins are usually

linked to other tokens’ value that do not comply with ERC-20 standards. In

case of WETH, it is linked to ETH, the native coin of the Ethereum network,

which is not an ERC-20 token itself. Because of this ETH cannot be used in

DEX’s smart contracts. This said, it should be noted that efforts are being made

to update ETH and push a new standard for tokens that should include this

updated version of the ETH [17].

Atomic structure. When evaluating transactions on the Ethereum chain, it

is critical to remember that all executions are atomic. This means that given

a sequence of computation in a transaction, one of two things can happen:

either all computations are legitimate and successful, or one fails, forcing all

previous computations in that transaction to be rolled back. This characteristic

may be effectively used, and it has enabled a number of procedures that

would otherwise be considerably more difficult or impossible to do. One of

these activities is known as flash loans, in which an external account can

loan a number of tokens from an exchange in a single transaction, utilize

them, and pay them back in the same block. This allows users to trade tokens

they do not even own in a completely risk-free manner: if the trade is not

profitable because it does not pay back more than was given in, it will simply
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not be executed, costing the external account only the amount of gas that was

required to compute the trade.

Proof-of-Stake. Ethereum is currently running the same Proof-of-Work pro-

tocol as the Bitcoin chain, but has suggested a change to combat the excess

amount of power used by nodes working to run the chain [18] as well as

combat other problems that have been discussed or will be in Chapter 4. This

transition, known in the Ethereum community as The Merge [19], will change

the Ethereum chain to be a full Proof-of-Stake chain. Meaning that some fac-

tors such as front running and gas costs influencing the AMMs on the current

chain my be reduced significantly. Ethereum states that this change will bring

a number of improvements, some important being:

• Lower energy cost as mining blocks will no longer be needed.

• A lower hardware requirement reducing the barrier of entry for nodes to

run the chain.

• A more decentralized chain as the lower requirement should increase

the number of independent nodes.

• Stronger support for sub chains also known as shard chains, which will

be important for improving the number of transactions the chain can

process.

These changes are important updates that target making the Ethereum chain

a more appealing environment to host trading markets. The Proof-of-Stake

achieves all these changes by multiple adjustments to the chain. First it will be

introduced a main chain known as the Beacon chain along with 64 shard chains.

This will greatly increase the throughput of the main chain as each of the shard

chain will be able to make the same amount of computations and storage as

the single "old" chain is currently, but with 64 of these running, the total output

will be significantly higher. Moreover, instead of having miners running node,

users can buy stake on the chain awarding them the role of validators. When

a new block is to be created, a validator is randomly appointed of putting a

valid block together, while the rest of the validators are to confirm that this

new block is valid. If a validator fails to be active, they can be punished by
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losing part of their stake. Moreover if they are found to collide by attesting

incorrectly a block of being valid, they will lose their entire stake. For each of

the shard chains, validators are chosen to form the committee of 128 validators
that are to validate the following 32 slots. Those will be combined at the

end and put on the main chain as a single block. After the 32 slots have

been completed, all committees are then dissolved and new ones are chosen

randomly. This process keeps a signal shard from having a set of malicious

committees. The new system rewards validators in a similar manner as the

Proof-of-work protocol does. First by being chosen as a validator and secondly

via the gas fees that each block pays.
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4Automated Market Makers

In the past decade the blockchain technologies have evolved and their utiliza-

tion has been seen in a plethora of different fields. One that has seen a constant

growth in interest is the cryptocurrencies markets within the financial field,

due to a list of factors. Firstly, because practicalities (e.g., price determination)

can be completely automated, as demonstrate by early implementations of

decentralized exchanges [20]. Moreover, as stakeholders of the blockchain

are required to maintain a singleton state state machine, operating financial

securities on this technology ensures that no direct manipulations are possi-

ble. These characteristics promoted the implementation of exchange of assets

on permissionless blockchains1 by the conventional central limit order book

(CLOB) design. Nevertheless, this proved to be expensive and infeasible on a

large scale: each order requires the computation and validation of the whole

chain resulting in an highly inefficient and costly structure [20].

To overcome these issues Automated Market Makers, a new type of markets,

have been presented. They have seen a surge in popularity and utilization

over the past two years as seen in Figure [1.3]. Their structure effectively

eliminates the necessity of an order book structure, as in traditional exchanges

and in the first iterations of blockchain based exchanges. Liquidity is collected

in pools made by pairs or groups of tokens that are available for users to trade

immediately at the current price. The reasons for which a trader might want to

operate are mainly two: he or she intends to use a digital currency a medium

of exchange for a good or a service, or he or she thinks that the currency will

increase in value in the future. This other option is due to the fact that, unlike

fiat currencies, pure digital tokens face a high volatility as shown in Figure

[4.1]. Hence, these cryptocurrencies have to be considered operationally as

risky assets. Despite the relevance of Modern Portfolio Theory in traditional

markets, [22] argues that Markowitz’s approach is not suitable to the exami-

nation of crypto portfolios. The main reason being that returns of the assets

in the portfolio are not normally distributed, a prerequisite for the Modern

1open environments accessible by all, opposed to permissioned ones that are accessible only
by parties recognized by a system administrator [21]
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Portfolio Theory. Because of this the implementation via the Ω-measure is

preferable for optimizing a portfolio that beholds digital assets.

Figure 4.1.: Source: Coinmarketcap.com

In creating AMMs different approaches have been undertaken and imple-

mented [23]. Major AMM protocols are: Uniswap, Balancer, Curve, DODO

with unique features [23]. Although they present substantial differences in

their structure there is one key element that is crucial for all of them: the

invariant and the relative conservation function, also called bonding curve.

The centrality of this element is due to the fact that, as different tokens are

traded, the output amount is computed algorithmically following the bonding

curve and hence the invariant. AMMs can be divided into Constant Sum Mar-

ket Maker (CSMM), Constant Product Makers (CPMM) and Hybrid Constant

Function Market Makers [24].

Constant Sum Market Makers. For a CSMM, the invariant k is defined by the

amount x of token A and y of token B that are available in the pool accordingly

to

x + y = k

Computing then the output amounts is a straightforward process: say Alice

trades ∆x, she would receive (in the case where no fees are applied):

(x + ∆x) + (y − ∆y) = k =⇒ ∆y = ∆x

Of course a market that follows such an invariant would encounter the possi-

bility of having one reserve drained, making the pool infeasible as it is not able

to meet markets’ demand. Because of this, CSMMs are feasible when trading
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stable coins, as their value are expected not to differ significantly over time

[24][25].

Constant Product Market Makers. This type of AMM are characterized by a

conservation function that is given by a (weighted) product of the reserves.

For example Uniswap V2 has the following bonding curve [26]

x · y = k

Trading amounts are computed as follows

(x + ∆x) · (y − ∆y) = k =⇒ ∆y = y − k

x + ∆x

Another example of how CPMM can be implemented can be found in Balancer’s

invariant function ∏
k

rωk
k

where rk is k-th asset’s reserve, and ωk its weight in the pool [27]. It is clear

that in this cases the output amount not only depends on the input amount

(like in the CSMM), but also on the reserves of token A and B in the pool. This

characteristic will be presented and discussed later in this section. Because of

this peculiarity of CPMM, it is not possible to drain a pool of a specific token

as the exchange rates dynamically adjusts to the reserve present in it, contrary

to the CSMM model.

Hybrid Constant Function Market Makers. Some implementations have tried

to combine the two approaches above presented, as they have different benefits

and downsides. An example is Curve, that derives its conservation function as

follows

Ann
n∑

i=1
ri + D = ADnn + Dn+1

nn
∏

ri

where A is the leverage constant when the portfolio is balanced [28], D is

obtained by 

n∑
i=1

ri = D

n∏
i=1

ri = (D

n
)n

and rk, k = 1, . . . , n is k-th asset’s reserve in the pool.

21



4.1 Uniswap V2

4.1.1 Structure

Uniswap’s core element is what is called a pool: a pair of two different tokens

that can be traded. Whenever a pool is created, parameters for that specific

pair are automatically set. The invariant k is obtained by multiplying the two

amounts of token provided [26], while the spot price is determined [23] by

the ratio between the two reserves

x · y = k P = x

y

The role of the invariant is to determine algorithmically the output amount

base on current reserves. Because of this, k is set not to change after trades2

as it acts as an indicator of supply and demand, what is updated is the spot

price for the considered pair.

At the same time, actions like liquidity provision or withdrawal are set not to

impact spot prices, as they do not reflect any change in demand or supply. In

order to achieve that, provision has to respect the pair specific proportion and

will in fact update the invariant k, but keep the spot price fixed.

So it is clear that different actions will impact pool’s parameters in various

determined ways. It can be summarized as follows:

Action Input Updated Parameter

Trade (∆x, 0) P̃ = x + ∆x

y − ∆y

Liquidity provision (P · ∆y, ∆y) k̃ = (x + P · ∆x) · (y + ∆y)

From the formulas above it should be clear that trades’ output amount are

highly correlated to reserves and not uniquely to spot prices. Whenever a

trade takes place, it modifies the balance of reserves resulting in a new price.

Since this behaviour is not due to fees the case where no fees are applied is

presented Consider the following pool:

2in practise this does not apply due to the payment of fees
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Reserve USDC Reserve ETH Invariant k

10000 300 3000000

If Alice wants to trade 100 USDC she would receive

∆y = y − k

x + ∆x
= 300 − 3000000

10100 ≈ 2, 970

which is lower then the spot price ∆ỹ = 300
10000 · 100 = 3 ETH.

This phenomenon is called slippage and it is due to the nature of the conserva-

tion function and to the fact that the pricing algorithm acts in two steps. First

the input amount is added to the pool, second the output amount is computed

with the updated values. The more one reserve is imbalanced compared to the

other the higher the slippage, as it can be seen in Figure [4.2].

Moreover this phenomenon has a larger impact when trading amounts are

Figure 4.2.: Conservation function of Uniswap V2

of the same order as those of the reserves in the pool. Consider the same

exact trade order as above in a pool with the same spot price, but different

reserves:
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Reserve USDC Reserve ETH Invariant k

10000000 300000 3000000000000

For her 100 USDC Alice would receive in this case ∆y ≈ 2, 99997, an almost

1% difference. It is clear at this point the magnitude of the correlation that

exists between reserves and slippage.

In fact, slippage is one of the biggest factors that traders have to take into ac-

count when operating within Uniswap as well as many other AMMs. Although

it would appear that dividing a transaction into smaller ones might help miti-

gate this phenomenon, as smaller transactions are less prone to experiencing

this phenomenon, it should be noted that even in the no fees condition this is

not the case. This is due to the convexity of the conservation function [29].

Moreover in the real case scenario, dividing a transaction into smaller ones

would heavily impact the final output amount as fees and gas prices have to

be paid multiple times. Although slippage is commonly viewed as a negative

component since it disincentivizes trades, it may be argued that it is in reality

a crucial feature of CPMM because it disincentivizes only large trades that

have a significant impact on price balance.

4.1.2 Fees Collection

The following section is based on [26] and presents how Uniswap V2 collects

fees and the reasons for this implementation.

Agents who provide liquidity are eligible to receive liquidity tokens. These

tokens keep track of how much an LP has contributed to a specific pool. It

would be costly to distribute fees as soon as they are collected because every

transaction from and to Uniswap’s pools is on-chain. Rather, fees are collected

and then distributed whenever a liquidity provider performs an action, such as

providing to or withdrawing from the pool. This occurs because these actions

affect the percentage of liquidity tokens each provider holds (as liquidity

tokens are minted or burned) in comparison to the pool’s reserve, making it

impossible to reward each LP with the correct amount later.

But how are the fees collected, and how does each pool know how much

each liquidity provider is owed? At first glance, it appears to be simpler to

set aside the fees in a separate reserve, implying that the pool should have a
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wallet containing the specific amount of tokens collected as fees. For liquidity

providers, this solution has one major flaw: if the value of token A rises against

token B, traders will be more likely to put tokens B into the pool in order to

receive tokens A. Providers would receive fees in the form of tokens B, whose

value has decreased outside the pool, resulting in a two-fold impermanent loss.

Fees are collected as liquidity tokens and then returned as a pair to avoid this.

This should protect liquidity providers from a sudden change in the value of a

particular token. This is an important factor to consider when analysing how

the value of LPs’ portfolios changes.

The next question is: how does the pool keep track of the fees collected in

liquidity tokens?

To accomplish this, a technique has been created that appears to go against

the fundamental premise of the constant product market maker, but is yet

incredibly elegant. When a trade occurs, the output amount is determined

using the constant product model, with the input amount being the amount

after fees have been deducted. In a situation where the fees are given by

(1 − γ), if an investor trades ∆x, the output amount ∆y is computed starting

from γ∆x instead. In summary,

∆x =⇒ γ∆x =⇒ ∆y = y − k

x + γ∆x

But the pool receives ∆x instead of γ∆x, and hence

(x + ∆x) · (y − ∆y) = k̃

where k̃ is the updated constant after each trade and k̃ > k [29].

Since the amount of liquidity tokens l is given by
√

k, it is possible to compute

how many fees have been collected in the form of liquidity tokens via

k̃

k
=
(

l̃

l

)2

=⇒ l̃ = l

√
k̃

k

It should be noted that the amount of liquidity tokens l updates after each

trade. Which means that after the n-th trade

ln = ln−1

√
kn

kn−1
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By recursion

ln = l0

√
kn

k0

where l0 and k0 (ln and kn respectively) are the amount of liquidity token and

the constant product variable after a LP has either provided or withdrawn (the

amount of liquidity tokens and the constant product variable after n trades

took place, respectively).

Therefore the amount of fees collected is given by ∆l = ln − l0. This must be

spread among liquidity providers via a burning operation that restores k to

its original value prior to trading. The structure of the AMM does not change

as a result of how this solution is implemented, and the pools’ fundamental

functionalities are preserved.

4.1.3 Agents

Despite having two main type of actions, agents that interact with the market

can be divided into three macro categories: traders, arbitrageurs (or swap

agents) and liquidity providers. Each of them have different strategies and

hence different behaviour can be noticed.

Traders. As per [30] transactions made by traders, also called uninformed
traders, can be considered to be independent from each other and follow no set

rule [31]. It can be assumed that their objective is to trade token A for token B

in order to operate on a platform that strictly requires token B. Another reason

that would prompt traders to swap one coin for another is that they might

want to hold various digital currencies in their portfolio, although as discussed

in [22] classical Markowitz Theory does not apply to crypto assets portfolios.

Hence, it is reasonable to consider that there is no set optimal strategy for this

type of agents. It is also plausible to assume that this category encompasses

the vast majority of protocol transactions.

Arbitrageurs. Another kind of agent that can be observed is what is called

an arbitrageur. Their strategy is to exploit prices differences or unbalances in

different markets or even within protocol’s pools. Arbitrageurs are set into

their own category as they act in a more informed way with the sole goal

of making immediate profit. Because of this they can be also referred to as

informed traders. Their strategy requires to collect information from multiple
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sources: different protocols, different markets and even different blockchains

which is done running complex algorithms on the blockchains state data. Even

if having arbitrageurs interacting with the pool and exploiting it by removing

liquidity might appear detrimental, in fact they act as a balancing element.

Their actions set prices to the equilibrium ones either influenced by other

markets or by influencing them [31]. The fact that this action has a positive

effect for the protocol is due to the presence of slippage: an arbitrageur will

never be able to drain one pool, because this would require an infinite amount

of a set token as the price would dynamically adjust when the request is

submitted.

In case arbitrageurs can trade with an external market that trades at a fixed

spot price (de facto it is assumed to be infinitely liquid), hence in the case

∆′
y = Pm∆x where Pm indicates external market’s spot price, the best optimal

amount to trade with the pool that has tokens (x, y) is

∆∗x =
(

Rx −
√

k

γPm

)
+

where Rx is pool’s reserve of token x, k is the invariant, (1 − γ) is pool’s fee

and (z)+ = max{0, z} [29]. The above result does not give any information

about the size of the arbitrage as it only ensures a profit opportunity. Hence,

an arbitrage might not be present if its return is less then what arbitrageurs

are required to pay in gas fees. This said, it should be highlighted that the

optimal arbitrage amount does not change.

The previous case relates to when a gap between pool’s spot price and external

market’s one is present. Another possibility can be seen when within the

protocol two pools have different spot prices. In this latter case the optimal

amount to be traded is

∆∗x =
−R

′
yRx + γ

√
kk′

γR′
y + γ2Ry

(4.1)

where (Rx, Ry), (R′
x, R

′
y) are the reserves of token x and y in the two pools,

k, k
′ are pools’ invariants and (1 − γ) is pools’ fee (hence equal for both pools).

This opportunity is unlikely to happen among two different pools with the

same pair of tokens as it would be immediately arbitraged.

It should be noted that the two different opportunities have different impacts

of protocol’s overall liquidity. In the latter case liquidity is simply moved from

one pool to another, leaving protocol’s liquidity stable whilst increasing profits

4.1 Uniswap V2 27



made due to fees. In the first case, part of the liquidity is withdrawn from the

pool leading to a partial loss in the total value locked within the AMM.

Miners. Once an action is submitted to be added to the blockchain it has

to be selected and then validated by the so called miners. Miners’ duty is to

check that the requested actions respect the whole state of the blockchain.

This effectively prevents invalid transactions to be executed by controlling the

whole history of the chain. Hence miners can be in some way compared to

brokers. Since validating and adding a block to the chain is a costly procedure,

miners will prioritize those actions that are willing to pay a higher validation

cost, or gas price. It is clear then that miners have the possibility of accessing

the requests they are submitted and because of this they have a favourable

position: they might exploit this information to profit acting as arbitrageurs

within the blockchain but as they control the ordering of transactions being

executed they are also able to "sandwich" trades using slippage on the AMM’s

to make profits on smaller arbitrages that would not be available non-miners.

This profit for the miners is was is known as miner extractable value (MEV),

and the behaviour has been highly researched and empirically analyzed in [32].

As many possible solutions to this issue have been presented and proposed for

implementation, this project does not aim to further discuss this specific agent,

as it can be labeled as an informed trader.

Liquidity Providers. In order for a pool to be created, an unspecified amount

of two tokens have to be provided to the protocol. Liquidity providers are the

agents who carry out this action. To keep trading volumes high, the protocol

pays out fees collected from trading actions to agents who provide pairs of

tokens. As a result, liquidity providers profit from the fees traders pay to place

orders in the pool. Contributing assets to the pool in exchange for shares of

fess can result in them losing potential value due to price movements within

the protocol when compared to holding the assets outside it. Because the

depreciation of the pool value disappears and reappears as price moves, this

effect is known as impermanent loss or divergence loss, and it is only realised

when assets are actually removed from the pool [33][23]. This phenomenon

is visualized in Figure [4.3]. An optimal strategy for liquidity providers would

be to withdraw their invested tokens when the spot price matches the value

at which they have invested, avoiding impermanent loss while also profiting

from the fee collection.
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Figure 4.3.: Impermanent Loss as presented in [33].

Unlike traditional markets, where liquidity providers are typically large funds

or institutions due to the minimum requirements to place trades in primary

markets, the DeFi environment does not limit liquidity provision to large

amounts. This allows small-cap investors to become liquidity providers. How-

ever, liquidity providers with large portfolios are common in the AMM envi-

ronment. It is then required to analyze how this two type of LPs are subject to

impermanent loss and how they profits move in relation to trade volumes and

price movements.
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5Implementation of
simulation

The simulation environment has been build as a digital twin of Uniswap V2

using Python version 3.8.10. Is has a number of required library’s that it

relays on to run. These can bee seen in the requirements.txt file. Further the

repository have a setup.py file included. This file can be run to generate the

working python environment that has been used to produce all the results to

come in Chapter 6. The implementation aims to replicate the real exchange as

closely as possible to how it is documented in the AMM’s whitepaper [26]. It

allows users to dynamically build and simulate how different scenarios of actor

behaviors effect the system. The different actors implemented are Trade Agent,

Swap Agent, Liquidity provider Agent and Pool Agents (see [B.4] for there full

implementation). By combining these the system can be tuned to replicate

trades, prices and provisions seen in the real Uniswap-V2 environment. The

implementation of the simulation environment and the actors existing in it

will be presented in the following sections.

5.1 radCad

RadCad is a powerful framework used for dynamical systems modelling and

simulation1. The framework is a Rust implementation of another framework

called cadCad. For the implementation it has been decided to use radCad over

cadCad due to it being a more flexible and dynamical system where actors

are created as instances of classes, a property not available in the the cadCad

framework. The overall structure of the simulation is presented in Figure [5.1].

Squares represent the setup and running phases of the simulation , while

ellipses represent Object instances that can be changed and updated to fit a

given simulation parameters.

Another key functionality of radCad is that it allows to run simulations using

1Information on the framework can be found at https://github.com/CADLabs/radCAD
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Figure 5.1.: Diagram of the overall simulation structure.

different initial parameters making is a powerful tool when it comes to ex-

ploring the impact that those might have on the system and the simulation.

Moreover, radCad allows for multiple Monte Carlo runs. This is vital feature

to have at disposal when analyzing a system that relies on any form of ran-

domness as a single run might be a outlier due this randomness. Thus doing

multiple Monte Carlo runs grants the option to inspect how variations of noise

trades and timing of these impact the overall result of the simulation.

5.2 Data

To construct a realistic simulation of the Uniswap-V2 ecosystem, a link to

the outside world will be required, as presuming that this lives in a vacuum

would be naive. This relationship is made possible by a set of historical price

data. The data utilized in this implementation is minute data, although the
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design enables for this to be changed if different data is given. The method

requires a .csv file called xxxyyy for each unique signal pool pair, where x and

y must equal the token symbols in the simulation. The file must have a unix

timestamp as well as the exchange rate at that moment. When the SimState is

first loaded, it parses the .csv file into a numpy array, which is then used to

update the signal price whenever the simulation reaches the time equal to the

next unix timestamp.

5.3 SimState

The SimState is built to hold information that must be available to all actors in

a given simulation such as time, available tokens, gas price and signal prices.

The full implementation of the Simstate can be found in Appendix B.3.

The SimState is never updated by a single actor action, but by their policy

functions which store all the actions executed. This is done to reduce the

dependency of actors to the SimState. The main function of the SimState is to

keep track of time. This is accomplished through the SimStrategy specifying

how long each single tick of the state moves the simulation in time. This is

important to ensure that the simulations time can be matched to real world

events such as signal pricing. When first initialised, the SimState will start the

first tick at a UNIX time. In all experiments conducted in Chapter 6 the starting

time 1646092800, that translats to 2022-03-01 00:00:00, has been used. Below

in the code snippet of the SimState, the definition of the takeStep function can

be seen. It is clear from the code that, no matter what a sim tick corresponds

to, either a second or a minute, prices are only updated every corresponding

minute in order to reflect the empirical data collected. This can be changed to

suit the data used by changing the constants.S_Per_MIN.

1 def takeStep ( s e l f , agents ) −> None :
2 s e l f . t i c k += 1
3 minuts_elapsed = np . f l o o r ( s e l f . t i c k * s e l f . s s . t ime_step / cons tan t s .

↪→ S_PER_MIN)
4 i f minuts_elapsed > s e l f . minutes_elapsed :
5 s e l f . minutes_elapsed += 1
6 s e l f . update_pr i ces ()

Moreover as the SimState acts like a storage center for the information used by

actors, this is done to reduce impact on actors when parameters are changed.
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This means that changing a parameter in the SimState will propagate the

change to all actors. Parameters that are used in this way are Gas fee, signal

price and time between ticks. Gas fees are implemented to be static and as

such will never change. This is done in order to avoid noise caused by large

fluctuations in gas prices as that would make almost impossible to conduct

a clear analysis. Liquidity Providers also access pools_trade_volume to make

informed decisions for their provision strategy.

5.4 Actors

As seen in Figure [5.1], all simulation’s agents inherit the functionalities of

the Base Agent. Because of this they must either use base agent’s functions

or their own implemented versions. If an agent is to make any action that

impacts either the SimState or other agents, it has to call for a policy. This

then executes it and updates the state and other agents affected by that action.

Because of this structure, the simulation has been implemented with an agent

policy both for liquidity provision and trading. All the code implementing each

actor and relative policies can be found in the Appendix B.4 along with their

policies in Appendix B.5.

5.4.1 Base Agent

The base agent has two input variables: a name and a wallet. The wallet

is used for keeping track of the different coins and amount that an agent

owns. To interact with the wallet the base agent implements three functions:

getBalance, payToken and receiveToken. These functions all take a Token Object

as an input, while payToken and receiveToken require an amount in the form

of a float. They then match the token to one in agent’s wallet and update his or

her wallet. The base agent also requires sub classes to implement a takeStep

function which is responsible for making all agents’ actions.

5.4.2 Pool Agent

Pool agents can be considered a contract accounts of the Ethereum chain

and are built as a super class of the Uniswap pool. This allows for further
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implementation of different pool types as they can be easily implemented with

minimal changes to the existing code.

All pools are implemented with the Uniswappool sub-class that acts as described

in [4]. All pools are made of a Pair Object which consists of two different Token

Objects. A Uniswap pool thus contain: a name, a wallet, a Pair and a SwapFee

parameter which sets pools trading fee. In the simulation a Uniswappool

Object is updated in two ways:

• a trader that exchanges one token for another with such an action

invoking a call to the trade_update function as presented in the snippet

below. This function is given the updated amounts of token holdings,

after slippage is taken into account.

1 def trade_update ( s e l f , token0 : TokenAmount , token1 : TokenAmount ,
↪→ l iqu id i tyAmount : TokenAmount) :

2 i f token1 . token . symbol == s e l f . token1 . token . symbol or token0 .
↪→ token . symbol == s e l f . token1 . token . symbol :

3 i f token0 . token . symbol == "USDC" :
4 s e l f . token0 = token0
5 s e l f . token1 = token1
6 e l s e :
7 s e l f . token0 = token1
8 s e l f . token1 = token0
9

10 s e l f . l i qu id i t yToken = l iqu id i tyAmount

• the pool is updated by a liquidity provider that either withdraws or

provides liquidity. In this case the pool must either burn UNI tokens or

mint new ones. This is done in the function liquidity_update that can be

seen in the code snippet below. It must also reset the fees collected since

last withdrawal or provision and distribute these as described in section

[4.1.2]. This is all done in the liquidity provision policy.

1 def l i q u i d i t y _ u p d a t e ( s e l f , de l ta0 : f l o a t , de l ta1 : f l o a t , de l taL :
↪→ f l o a t ) :

2 ln = s e l f . l i qu id i t yToken . amount * math . s q r t (( s e l f . token0 . amount
↪→ * s e l f . token1 . amount/ s e l f . i n v a r i a n t ) )

3 s e l f . f e e s C o l l e c t e d = ln − s e l f . l i qu id i t yToken . amount
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5.4.3 Trade Agent

Because the simulation requires some kind of noise in order to function and

run in a somewhat realistic manner, a new class of actors called Trade Agents

have been implemented. These agents will not make informed trades like

other agents, but will instead make stochastic trades designed to reflect the

average buying client that operates on the Uniswap exchange, like suggested in

[31]. These traders can be assigned a trade frequency parameter that controls

how frequently they trade. To be able to fine tune trading these agents can be

assigned to one, more or all pools when first initialized. This makes them able

to trade only in assigned pools. The size of their trades is set to be proportional

to the amount of holdings they have, ranging from 0% to 10% of their total

portfolio and based on a normal distribution.

5.4.4 Swap Agent

Swap agents are built as a subclass of the Trade agent, which means they share

the same function call but have distinct functionality. The swap agents will

only conduct arbitrage, hence they will always execute zero or two trades in

a sim tick. The swap agent does not implement a new takeStep function, as

it inherits the trade agent’s function. This then calls the _tradePolicy function

that is implemented differently to how it has been done for the trade agent.

The function runs through each known pool agent, comparing compatible

coins and looking for a difference in price between them. This will result in a

list of ratios, where each of those ratios reflects the price differences. The swap

agent then proceeds comparing the optimal arbitrage amount to its holdings

and computes if it is possible to collect a gain after fees, both the protocol one

and the gas one, are being paid. If no arbitrage is available the swap agent will

simply do nothing. One the other hand if an arbitrage opportunity is available,

it will determine if one of the pool that it is trading with is a signal pool. This is

done since swapping with a signal pool has a different optimal output amount

than doing the same trade with a Uniswap pool. This is implemented as shown

in the code below.
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1 i f " S igna l " in pool_agent . name :
2 tokenPr i ce = buy_fromPool . pa i r . s i g n a l P r i c e [ token . symbol ]
3 amount = s e l l _ t o P o o l . pa i r . getToken ( token ) . amount − (( s e l l _ t o P o o l . pa i r .

↪→ i n v a r i a n t / ((1−buy_fromPool . swap_fee ) * tokenPr i ce ) ) **(1/2) )
4 bestAmount = TokenAmount( pool_agent . pool . pa i r . getToken ( token ) . token , max

↪→ (amount , 1 .0* 10**(−12) ) )
5 outputAmount , new_pair_token = pool_agent . takeSwap ( bestAmount )
6 p r o f i t = s e l f . _ g e t P r o f i t ( s t a t e , pool_agent , other_pool_agent , bestAmount

↪→ )
7 e l s e :
8 tokenPr i ce = s e l l _ t o P o o l . pa i r . s i g n a l P r i c e [ token . symbol ]
9 amount = buy_fromPool . pa i r . getToken ( token ) . amount − (( buy_fromPool . pa i r .

↪→ i n v a r i a n t / ((1− s e l l _ t o P o o l . swap_fee ) * tokenPr i ce ) ) **(1/2) )
10 bestAmount = TokenAmount( pool_agent . pool . pa i r . getToken ( token ) . token , max

↪→ (amount , 1 .0* 10**(−12) ) )
11 outputAmount = TokenAmount( pool_agent . pool . pa i r . getOppesitToken ( token ) .

↪→ token , bestAmount . amount * tokenPr i ce )
12 p r o f i t = s e l f . _ g e t P r o f i t ( s t a t e , pool_agent , other_pool_agent , bestAmount

↪→ )

5.4.5 Signal pool

As previously stated, one of the key points in this simulation is to replicate

trends that can be observed in the Uniswap protocol as closely as possible.

As a result, it is crucial to include external factors that affect the AMM in

ways that are not controlled by the AMM itself. The Signal Pool is used to

implement such key factors, which in this case are outside prices. Only Swap

Agents can interact with these pools while exploiting arbitrage opportunities.

Moreover Signal Pools are considered to have infinite liquidity, hence to not be

affected by slippage, making the Uniswap Pool the limiting factor in the size

of an arbitrage. This is done because the data used for this outside pricing is

pulled from a centralized exchange where prices do not face slippage but are

constantly updated, similarly to a traditional high frequency trading exchange.

Signal pools are all implemented in the same manner as the other pool agents.

The only difference is that in the arbitrage policy, every tick of the simulation

corresponds to a call to the updatePrice function as presented in the code

snippet below. The function first resets the amount of non-WETH tokens. This

is accomplished by first determining which of the two pool’s tokens WETH is

in (line 3), as pools have no restrictions on which coin must be which. Then,
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in lines 7 and 12, the function changes the WETH amount to match the ratio

provided by the eth_USD float. By doing so, the code ensures that the signal

pool is never depleted in a realistic simulation, as trades of this size would

never occur in such cases.

1 def updatePr i ces ( s e l f , eth_USD : f l o a t ) :
2 # 1 eth −> x USD thus we i n c r e a s e amount o f USD in poo l to r e f l e c t t h i s
3 i f s e l f . token0 . token . symbol == "ETH" :
4 s e l f . s i g n a l P r i c e [ "ETH" ] = eth_USD
5 s e l f . s i g n a l P r i c e [ s e l f . token1 . token . symbol ] = eth_USD**(−1)
6 s e l f . token0 = TokenAmount( s e l f . token0 . token , 9 * 10**12)
7 s e l f . token1 = TokenAmount( s e l f . token1 . token , s e l f . re serve0 () . amount*

↪→ eth_USD)
8 e l s e :
9 s e l f . s i g n a l P r i c e [ "ETH" ] = eth_USD

10 s e l f . s i g n a l P r i c e [ s e l f . token0 . token . symbol ] = eth_USD**(−1)
11 s e l f . token1 = TokenAmount( s e l f . token1 . token , 9 * 10**12)
12 s e l f . token0 = TokenAmount( s e l f . token0 . token , s e l f . re serve1 () . amount*

↪→ eth_USD)

5.4.6 Liquidity Provider

Liquidity providers are different than any other agents since they are the only

agents that must be given a list of pool agents in their initialization. This

list should contain all pool agents that the liquidity provider is allowed to

provide to. Moreover, the list is used to create a dictionary of all available

pools and the amount of UNI Tokens that a LP holds of each pool. Recall that

the UNI token is used to keep track off the proportion of liquidity that a LP

has provided in the pool. When a liquidity provider calls the takeStep function,

it first checks if there are any liquidity pools that is worth providing to. How

much the LP would expect to make in return is calculated in the code snippet

below. It can be seen, in line 2, that liquidity providers have a variable called

rolling_window_size. This declares how from how far back a provider will

consider historical trading volume data relevant for making a decision. If this

window is greater then a pool’s history it will simply consider the pool’s full

history. The expected return is then calculated taking the mean over the given

historical window and multiplying it with the pool’s swap fee. This gives the

provider an indication of how much it is paid in fees on average in a specific

pool.
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1 fo r agent in pools . va lues () :
2 i f len ( s t a t e . pools_trade_volume [ agent . name]) >= s e l f .

↪→ ro l l ing_windows_s ize :
3 ro i_agent = mean( s t a t e . pools_trade_volume [ agent . name][− s e l f .

↪→ ro l l ing_windows_s ize : ] ) * agent . pool . swap_fee
4 e l s e :
5 ro i_agent = mean( s t a t e . pools_trade_volume [ agent . name]) * agent . pool .

↪→ swap_fee
6 ro i _o f _agen t s [ agent ] = ro i_agent

When the expected returns are computed, it proceeds to decide if the returns

are high enough and if it has enough funds to provide. This is implemented

as in the code snippet below, on line 4. If this is the case, then the LP makes

a provision to the pool with the highest expected return. Otherwise it will

consider if there is any pool in which it holds liquidity and that is not making

enough profit, initiating a burning action to withdraw an amount of invested

liquidity.

1 h i g e s t _ r o i = max( ro i _o f _agen t s . i tems () , key=lambda x : x [1])
2 lowes t_ ro i = min( ro i _o f _agen t s . i tems () , key=lambda x : x [1])
3
4 i f h i g e s t _ r o i [1] >= s e l f . r o i and my_wallet_usd > s e l f . t r e sho ld :
5 amount = TokenAmount( s t a t e . tokenA , my_wallet_usd * random . randrange

↪→ (15 ,20) /100)
6 h i g e s t P a i r = h i g e s t _ r o i [ 0 ] . pool . pa i r
7 i f amount . amount / h i g e s t P a i r . tokenPr i ce ( h i g e s t P a i r . getOppesitToken (

↪→ amount . token ) . token ) < my_wallet_eth :
8 re turn ( LPPo l i cy . PROVIDE , amount , h i g e s t _ r o i [0])
9

10 e l i f l owes t_ ro i [1] < s e l f . r o i and s e l f . l i qu id i t yToken [ lowes t_ ro i [ 0 ] . name
↪→ ] . amount > 0 .0 :

11 amount = TokenAmount( s t a t e . tokenA , my_ l i qu id i t y [ l owes t_ ro i [ 0 ] . name ] .
↪→ amount * random . randrange (15 ,20) /100)

12 re turn ( LPPo l i cy .BURN, amount , l owes t_ ro i [0])
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6Results

6.1 Simulation data

This project’s goal is to make the simulation findings as relevant and compara-

ble to the real Uniswap-V2 as possible. Data from the genuine Uniswap-V2 and

form the CEX Bitstamp were collected and utilized. Etherscan1 a sophisticated

tool that allows users to scrape data from the Ethereum blockchain, was used

to obtain data on Uniswap-V2 deals. While data from Bitstamp has been

downloaded from cryptodatadownload2 since it allows to retrieve day, hour, or

minute data. Bitstamp was chosen for the signal data because it provided for

quick access to minute data without requiring a professional api key. Moreover

it was assumed that all CEXs have identical prices, that do not diverge more

than a small amount one from another, since this would open them up to

arbitrage. The project’s time frame was set to be from March 1 to March

17 2022 as to maintain relevance in a rapidly changing market. Although,

ideally, the time frame would be expanded to provide additional insight into

the broader picture. When choosing relevant pairs to use for the simulations,

certain criteria had to uphold:

• CEX data must be available and updated in intervals of maximum 1

minute

• The pair must be available and traded on Uniswap-V2 over the full period

• One token of the pair must be the same across all pairs, the so called

numeraire token

• Pairs must have some form of relevance eg. high trade volume, estab-

lished coins, high liquidity

1A Ethereum Blockchain Explorer https://etherscan.io/
2Link from where data was pulled https://www.cryptodatadownload.com/data/bitstamp/
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Pool Starting Liquidity Starting Price

WETH-USDC 210 713 262 USD 1 to 2933.68

DAI-USDC 69 988 631 USD 1 to 1.0001

WBTC-USDC 571 518 USD 1 to 44 663

Table 6.1.: Pools initial values liquidity pulled from Uniswap-V2.

These criteria resulted in choosing the following three pairs: USDC-WETH,

USDC-DAI, and USDC-WBTC.3. WETH and WBTC are wrapped tokens of ETH

and BTC coins as both of these tokens are not originally created as ERC-20

tokens.

Because USDC-WETH was the most traded pair at the time, it was included

in the preliminary pool. As a result, the simulations’ common token is USDC,

which is a center stable-coin built on a smart contract that works to keep the

USDC value 1 to 1 with the US Dollar4. This allowed to a straightforward

conversion to USD as it has been assumed that it would remain constant

throughout the entire duration of the simulations. Hence using Bitstamp

data, which is priced in USD, is reasonable and does not lead to inconclusive

results. USDC-DAI has been picked because it is the second most traded pair on

Uniswap-V2 during the time period considered while meeting the requirements.

The USDC-WBTC combination was chosen both because it has substantially

less liquidity than the other two (Table 6.1), and because the BTC token is

well-known and traded on CEXs.

For a meaningful study, selecting proper sets of initial values is critical. Table

6.1 shows the starting liquidity and price utilized in all simulations for each

pool pair.

6.2 Simulations

Several scenarios were considered for the following simulations in three dif-

ferent permutations of the above pairings have been analysed. Alternative

compositions of liquidity providers will be examined for each of them. The

purpose is to comprehend how returns differ depending on the pools studied

and the initial holdings of LPs. Three separate LPs with baseline portfolios

3Links to each of the pools: WETH-USDC, DAI-USDC, WBTC-USDC
4This can be seen from coinmarketcap.com
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Figure 6.1.: Accumulated trade volume in USD in periods of 10 minutes for WBTC.

Figure 6.2.: Accumulated trade volume in USD in periods of 10 minutes for WETH.

Figure 6.3.: Accumulated trade volume in USD in periods of 10 minutes for DAI.
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have been identified: Because the simulations’ focus has been on LPs, it has

Type USDC ETH BTC DAI

Small 100 000 2.5 10 100 000

Medium 1 500 000 400 20 1 500 000

Big 10 000 000 5000 400 10 000 000

Table 6.2.: Different liquidity providers baseline by portfolio’s size.

also been vital to mimic the trading witnessed on the real exchange. This has

been done, as previously indicated, using signal pools, but also by tweaking

transactions to follow market trades. This was accomplished through the use

of several instances of trade agents dealing with different set of pools. Each

simulation includes the following Trade Agents:

• 2 traders that can trade with one of the two pools random small amounts

for every step

• 2 agents trading only with the USDC-WETH pool at higher volumes, but

only once every 3 timesteps

• 1 trader doing high volume trades once every 2.5 hours on the USDC-

WBTC or USDC-DAI pool (based on the experiment settings)

• 1 trader doing twice the volume of the trader above, but only once every

10 days in the USDC-DAI pool.

As a result, trade patterns in the simulation environment are as depicted in

Figures [6.1] - [6.3]. Although these accomplish to match total trade volumes

within a +- 10%, with the margin varying across random runs, there are

some significant differences. The key difference is that all three currencies are

traded more often but in smaller amounts. This is notably noticeable in WETH

trading, where the average deal size per minute is greater in the simulator

than in the real data. However, the genuine data has far greater spikes at times.

Since LPs gains are not influence by sizes of individual trades, but only by the

total volume traded between provisions or withdrawals of liquidity, the setting

can be considered to be coherent and adequate to pursue the analysis.
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6.2.1 USDC-WETH vs USDC-WBTC

The following are four different scenarios that have been researched and

analysed, all of which include WETH and WBTC. Various combinations of LPs

were considered in each case in order to examine their strategies, gains, and

how their actions affect each other’s returns.

2 Small LPs The cumulative returns at the end of the experiment are 0.09%

if only two small LPs are considered to provide to the pools. Figure [6.5]

shows how an initial time period in which no provision is made results in no

profit or loss in the value of the LPs’ portfolios. This lack of action is due to low

cumulative trading volumes: liquidity providers are only required to provide if

the mean of trading volumes over a specified time period exceeds a certain

threshold. The random trades are too small in this scenario for LPs to consider

providing as a profitable strategy.

With the first time LPs provide to one of the pools, there is a drop in gains. This

is because they need to pay gas fees in order to carry out that action. Agents

with smaller holdings are more affected by this cost of service, as their fee

collection returns may be on par with gas costs. The drop seen at 2022-03-08

is due to an arbitrage action that changed token reserves and thus the value of

LP’s portfolio. Nonetheless, arbitrage fees are collected and redistributed back

to liquidity providers whenever the pool’s liquidity changes. This change in

LPs profits is evident when comparing cumulative returns jumps to provision

actions in Figure [6.5].

2 Medium LPs and 2 Small LPs When two liquidity providers with a larger

portfolio are added to the previous case, small LP gains increase by 0.14% at

the end of the experiment. This is unsurprising, given that a pool with more

liquidity is less sensitive to the effect of slippage for trades of similar size.

This increases trades cumulative volumes and as a consequence small LPs are

incentivized to provide. The increase in provision can be seen in Figure [6.7],

when compared to Figure [6.5] as small LPs own an higher percentage of the

pool.

Medium providers, on the other hand, have a higher return than small LPs,

with returns peaking at nearly 0.30%. Larger LPs should expect higher returns

because they are entitled to a larger portion of the fees (Figure [6.7]) and the

impact of gas fees is minimal for these LPs. The more stable positive trends
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Figure 6.4.: Cumulative returns of a Small LP if provision is made.

Figure 6.5.: Relative amount of UNI hold by a Small LP. They are used as a bookkeep-
ing tool in order to determine the amount provided to pools for each LP.
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in the returns are indicative of this phenomenon. Furthermore, Figure [6.6]

shows how price changes have a smaller impact on gains for medium LPs.

Gains for both Small and Medium LPs are more stable than in the previous

case.

Figure 6.6.: Comparison between different LPs returns.

Figure 6.7.: Percentage of UNI in each pool for Small and Medium LPs.
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1 Big and 2 Small LPs Returns for small liquidity providers peak at 0.20 %

when a Big LP provides to pools, according to simulations. Unlike medium LPs,

big providers appear to be more exposed to price fluctuations, as fees collected

are insufficient to cover the difference due to impermanent loss over a short

period of time. In fact, in the simulation, this type of LP has a less stable rate

of return (for example, between 2022-03-15 and 2022-03-17), more similar

to that of small LPs than to that of medium LPs. These jumps, as shown in

Figure [6.9], do not correspond to actions taken by small LPs, implying that

they are solely due to price variations. An interesting behaviour in LPs profits

can be noticed around 2022-03-09. While the Big LP faces a drop in its profits,

it would appear that, surprisingly, the same does not happen to Small LPs. But

this is not the case. A closer look highlights that also Small LPs are subject to

a loss in their gains due to a price variation, but this loss is mitigated by the

redistribution of fees happening in conjunction with the Big LP providing to

the pool. Moreover, it can be seen that big LPs interact later than small LPs.

This is due to the fact in these simulations they are considered to have lower

frequency for provision.

Figure 6.8.: Comparison of returns for Big and Small LPs.
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Figure 6.9.: Portfolio history of Small and Big LPs with WETH and WBTC tradeable.

Pool Experiment 1 Experiment 2 Experiment 3 Experiment 4

WETH-USDC 335 424 104 318 719 973 333 409 951 346 629 039

WBTC-USDC 2 334 554 2 153 941 2 349 424 2 564 385

Table 6.3.: Trading volumes in USD in pools at the end of simulation.

2 Big and 2 Small LPs As one might expect, adding one more Big LP has a

significant impact. The returns on small LPs have dropped to 0.15% from

0.20%, but the gains on Big LPs have dropped to 0.02%. As expected, strategies

are similar among LPs in the same category, and they are identical to the

previous case scenario, Figure [6.10].

Having LPs with large portfolios provide at the same time appears to have a

negative impact on all LPs to varying degrees.

In conclusion, regardless of the LP combinations considered, it appears that

providing is the most profitable strategy in these circumstances. It’s worth

noting that trade volumes vary little from one experiment to the next (Table

6.3). Having agents provide liquidity to pools will inevitably change the market

because traders will experience less slippage. Nonetheless, ensuring that trade

volumes do not fluctuate dramatically ensures that the above results are not

due to the simulations’ randomness. No liquidity provider has invested in the

USDC-WBTC pair, as shown in the examples above. This is due to the small

volume of trades that take place in the pool. As a result, LPs are unlikely to

provide to a pool where fees are unlikely to cover the volatility of the USDC-

WBTC pair. It is thus more profitable to avoid providing WBTC than to lock

any amount of it into the protocol.

Comparing these findings to [34] it would appear that the experiments run
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Figure 6.10.: Portfolio history of Small and Big LPs with WETH and WBTC tradeable.

in this project present significant differences compared to real world scenario.

In that analysis monthly returns up to 5% are recorded and annual ones up

to 20%. The difference in this project’s results is to be appointed due to the

fact that the whole portfolio’s performance is considered. Hence net profits

consider impermanent losses both for the USDC-WETH and the USDC-WBTC

pairs, lowering the returns registered.

6.2.2 USDC-WETH vs USDC-DAI

Simulations with similar settings as before, but with pool trading USDC-WETH

and USDC-DAI, were conducted in order to study how returns are correlated

to tokens traded. When using the same LPs with this new pool pairs, some

differences have emerged.

2 Small LPs When only small LPs are taken into account, their strategy is

very similar to the previous cases, but their returns are only 0.05%. This is

because, as shown in Figure [6.11] LPs provide to the USDC-DAI pool in this

scenario, avoiding the fee distribution that occurs in the previous setting.
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Figure 6.11.: Differences in returns and providing strategies of Experiment 1 when
WBTC (left) or DAI (right) are considered.

2 Medium and 2 Small LPs Having two medium and two small LPs increases

profits for agents with smaller portfolios once again, as they achieve 0.30

percent returns. Figure [6.12] shows that LPs are once again providing to both

pools, implying that volumes are more favourable to overcome impermanent

loss.

1 Big and 2 Small LPs Another difference can be noted in the case of one big

and two small LPs: agents with smaller portfolios make a peak profit of 0.30%

(compared to 0.20% with WBTC tradeable), while the larger LP’s return drops

to 0.05%. As shown in Figure [6.13], these results are due to the fact that

USDC-WETH fees are not redistributed at the end of the experiment.

2 Big and 2 Small LPs The final scenario is similar to its WBTC counterpart

in that LPs with larger funds see their profit shrink to 0.03%. Returns on small

LPs, on the other hand, are increasing to nearly 0.40%. Figure [6.14] shows

that profits have increased as a result of a higher percentage of UNI tokens in

the USDC-WETH pool, resulting in Small LPs receiving a larger portion of the

fees collected.
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Figure 6.12.: In this setting LPs are providing to both pools.

All of the above findings are not surprising. Liquidity providers face little to

no impermanent loss due to the stable nature of DAI, as prices do not fluctuate

as much as the other two pairs. This allows LPs to collect fees for trading that

takes place in the USDC-DAI pool while only incurring service costs.

Pool Experiment 1 Experiment 2 Experiment 3 Experiment 4

WETH-USDC 328 816 987 334 989 671 328 027 231 337 706 364

DAI-USDC 12 069 090 8 206 081 10 678 035 7 867 679

Table 6.4.: Pools volumes in USDC.

LPs consider providing in both pools to be a viable strategy, but refrain in the

previous case scenario due to trading volumes being too low in the USDC-

WBTC pool, as can be seen from Table 6.4.
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Figure 6.13.: Differences in returns and providing strategies of Experiment 3 when
WBTC (left) or DAI (right) are considered.

6.2.3 USDC-WETH vs USDC-WBTC vs
USDC-DAI

Another experiment was carried out to see how the presence of all three pools

would affect LPs returns. Two Big and two Small LPs have been considered to

interact with the different pools in this case scenario. To keep the results as

consistent as possible, all parameters were left unchanged. Different strategies

are used by liquidity providers: it appears that LPs consider investing in only

one pool to be more profitable, and only one of the small LPs provides liquidity

to two pools. Providing to the USDC-WBTC pool is not a profitable strategy

for any agent, once again. Returns differ from one agent to the next due to

their LPs’ different approaches, as shown in Figure [6.15]. Providing to the

USDC-DAI pool results in a return increase of only 0.002%, which is a low rate

when compared to providing to the more volatile USDC-WETH pool, which

yields a tenfold higher return.
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Figure 6.14.: Differences in UNI tokens for Experiment 4 when WBTC (left) or DAI
(right) are considered.

Figure 6.15.: Differences of LPs strategies and returns when considering all three
tokens to be tradeable.
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6.2.4 Different fees

Because fees are the only way for LPs to profit from interacting with the

protocol, it is reasonable to see if any tweaks could result in an increase in

profits, especially since different fees imply different trading volumes.

To achieve this, previous simulations were run with trading fees of 0.5% and

0.1%, respectively. Figure [6.16] shows the results of these new experiments.

When it comes to USDC-WETH and USDC-WBTC, Small LPs do not appear

to benefit from either an increase or a decrease of the trading fee. A slight

drop in trading volume translates to a significant loss for this group of LPs,

which is already impacted by gas prices. Simultaneously, the increased volume

obtained by lowering the fee is insufficient to result in higher profits. This is

not the case in experiments in which DAI is used instead of WBTC. If fees are

increased to 0.05%, Small LPs will see an increase of 0.02% (nearly 1.5 times

the returns).

When LPs with larger portfolios interact with the pool, a different pattern

emerges. Higher fees encourage LPs to provide, resulting in lower levels

of slippage for traders. From the perspective of traders, it appears that the

fee increase compensates for the slippage. As a result, trading volumes are

comparable, and LPs’ total returns increase.

As shown in Figure [6.16], LPs with larger portfolios appear to benefit the

most from a higher fee. Given that trade volumes are within the same range

for all three fees, the reasons for the disparities in cumulative rates of return

should be investigated in any differences in LPs providing strategies. Because

each LP has a different minimum return threshold, having higher fees helps

forecast a higher return and thus incentivizes providing. This is best illustrated

in Figure [6.17], where it can be seen that when two Medium and two Small

LPs are considered, returns for a fee of 0.3% suddenly outperform others. This

is due to the fact that fees from the USDC-WETH have yet to be collected in the

other strategies, demonstrating how strategies change and adapt for different

scenarios.
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Changing trading fees has a number of consequences, not only for trading

volumes but also for providing trading strategies. Overall, it appears that when

only small providers interact with pools, trading volumes decrease, resulting

in a lower cumulative return. Gains on larger LPs, on the other hand, are the

polar opposite. They benefit from higher transaction fees because they are

less exposed to gas costs and their actions have a greater impact on attracting

trade agents to operate on protocol pools.

Figure 6.16.: Differences in returns for several fees. Top: Small LPs in the first two
experiments. Small LP (left) and Big LP (right)in experiment 3, 4 and
8.
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Figure 6.17.: Different strategies for each fee cause different returns. From left to
right: 0.1%, 0.3% and 0.5%.
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7Discussion

Looking at how prices fluctuate for the three different tokens considered in

simulations (Figure [7.1]), it is expected for liquidity providers to make profits.

As discussed extensively in previous sections LPs are exposed to impermanent

loss whenever they provide. Meaning that their portfolio depreciate as prices

fluctuate. Although, if after a period of volatility prices settle back to the initial

levels the impermanent loss faced by LPs is zero. Hence providing results in

no depreciation or lost extracted value, whilst accumulating value through

collection of transaction fees leading to positive returns. Results also show that

liquidity provider are encouraged to be dynamic by improving pools’ liquidity

depth as it ensures higher percentage from fee collection.

Figure 7.1.: Price fluctuations of WETH, WBTC and DAI relative to their value as per
2022-03-01
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Considering a 17 days time window for the analysis might lead to considering

results not completely conclusive, as other analysis indicate higher returns for

the same pairs [34]. Nevertheless the analysis conducted in this project differs

slightly from such, as gains are considered in regards of LPs portfolio’s sizes,

token composition, how they interact with each other, what coins are provided

and what are the effects of gas fees. Hence discrepancies are to be expected.

Although Ethereum’s block times is approximately 14 seconds, it should be

noted that several transactions are received to be added to each block, are

not uniquely Uniswap’s trades. Then considering an interval of 1 minute

between each block in the simulations appears a feasible assumption that does

not cause for unrealistic results in the scope of this project. Moreover, this

is backed by the trading volumes reached in simulations that are within 5%

for the USDC-WETH, the pool with the highest trading volume and liquidity

among the three considered.

It is important to note that the three token pairs chosen for this analysis rep-

resent only a small portion of the total number of token pairs available on

Uniswap V2. WETH, USDC, and DAI, on the other hand, are the tokens with

the highest trading volumes and liquidity within the protocol1. Restricting the

analysis to these coins and WBTC (chosen to include coins that are primarily

related to the blockchain environment) was not deemed restrictive or limiting.

An important factor of trading on the Ethereum blockchain is the associated

gas cost that comes with doing these trades. This cost will be higher depending

on both the amount of other transactions competing for acceptance [3.2].

These might be caused by all sort of events, one of them being the poten-

tial profits that can be made by doing arbitrage. Such trades will often be

discovered by more than one user driving up the price they are willing to

pay in order to secure the arbitrage. In the simulations conducted, gas costs

have been considered constant as to avoid noise to the data that would have

made complex to identify how the several factors and variations in profits are

correlated. Moreover fluctuating gas prices would have also had an impact on

LPs providing strategies, in particular for Small ones as their returns are more

dependant on gas costs then larger LPs.

Figure [7.2] shows that the presence of arbitrageurs allows spot prices within

the pool to be adjusted to reflect CEX prices. This phenomenon is critical

for the experiments to be consistent and reflect real-world scenarios, because

otherwise, LPs would not experience impermanent loss, resulting in consis-

tent positive returns regardless of fluctuations in other exchanges. However,

1Uniswap V2 token overview
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spot prices in Uniswap do not perfectly match outside prices, implying that

traders use different strategies than the actors in the simulations. This dif-

ference was also evident in the early stages of the analysis, when traders

were assumed to be equally likely to interact with the various pools: volumes

for the USDC-WBTC protocol were 400 times higher than those for the real

Uniswap protocol, despite the fact that price fluctuations for WETH and WBTC

are similar. Because of these inconsistencies, it was necessary to create a

different type of uninformed trader. The stability of prices within the pool

for some experiments (e.g. Experiment 2) is the reason for the more stable

gains’ trends as LPs face a stable impermanent loss while outside prices are

fluctuating, as seen in Figure [7.2]. In this project only one external source of

price fluctuation has been implemented. Since CEXs’ prices are determined via

the more traditional ordering book model it would be very unlikely to have

major differences amongst these exchanges. An interesting question could

arise at this point: is Uniswap, and DEXs in general trailing and following

price changes that are registered in centralized exchanges or is it the other

way around? Experiments in this project show that prices in the protocol adapt

following information from CEX. To answer to this question a more empirical

analysis is needed and has not been carried out in this project.
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Figure 7.2.: Price fluctuations of WETH, WBTC and DAI within Uniswap relative to
their value as per 2022-03-01
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8Conclusions

All the experiments suggest that providing liquidity to multiple pools is a

profitable strategy with an yearly return of 1% for the whole portfolio in the

majority of scenarios. In a highly volatile market, a return of 1% might not

be too appealing to liquidity providers as they might consider this strategy to

too slim gains considered the amount of risk they would expose themselves

to. Nonetheless, return sizes vary and are influenced by a number of factors.

Large provisions are more likely to incentivize trading as they contribute to

reducing slippage. Although the presence of multiple large providers reduce

their individual profit as a effect of having a smaller a portion of fees collected.

It is then clear that the best strategy for an LP would be to provide to a pool

where trades are such that a provision would lower the level of slippage faced

by traders. In fact if a pool has a deep liquidity increasing trading fees would

not result in a sudden and noticeable diminish in trading volumes, meaning

that LPs would have higher returns. One the other hand reducing trading fees

would most likely not lead to an increase in trades volumes that would results

in an overall increase in returns.

Experiments with two Big LPs, in which their returns are lower than when

only one LP with similar portfolios is considered, raise the question of how

LP strategies should adapt to the presence of other LPs and a pairs status.

The protocol’s ultimate goal is to create pools with deep liquidity to ensure

trades. Simulations on LPs providing strategy in settings where the spot price

and trading volumes of the USDC-WBTC pair were left unchanged, but with

increased liquidity have been conducted. These experiments have not been

presented as no difference for LPs gains has been recorded, due to them still

not providing to that pool. Low trading volumes would result in low fee gains,

which would be further reduced by the fact that fees would be proportionally
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distributed among LPs.

Furthermore, introducing controlled fluctuations in gas costs in order to anal-

yse their impact on liquidity providers’ profits would be an interesting extension

and continuation of this research. Approximating gas prices based on historical

data could be one way to recreate such a phenomenon in a controlled manner.

This could have a greater impact on Small LP gains, but it could also lead to

a more cautious providing strategy, as the cost of each action would have a

different impact on profits. Gas price fluctuations obviously have an impact on

all agents interacting with the protocol, as both liquidity providers and trading

agents must consider an additional deterring variable when deciding on an

investment strategy and determining whether or not executing transactions

on the protocol is profitable. This would result in more dynamic volumes

and gains for LPs, but it would also introduce noise into the data, as previ-

ously stated. As a result, it is the ideal next step to bring analysis of liquidity

providers’ profits to higher level of precision.
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AAppendix

A.1 Definitions

A list of mathematical definition are presented from [7]

Definition A.1.1 The expected return1of a security is given by

R̄ = E[R] =
n∑

i=1
PiRi

where Ri are the n-possible return’s outcomes and Pi the respective probability of
it occurring.

In order to measure the dispersion of the outcomes and subsequently the risk

that is faced, it is necessary to introduce the concept of standard deviation.

Definition A.1.2 The variance of the return is given by

σ2 =
n∑

i=1
[Pi(Ri − R̄)2]

Moreover, σ is called standard deviation

Therefore a smaller standard deviation implies that outcomes are within the

same range and big leaps are unlikely to happen.

It is possible now to introduce the definition of portfolio

1Return: change in value of an investment over time
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Definition A.1.3 A portfolio is represented by a vector

X =



x1

x2

...

xM


, x1 . . . xM ∈ R

where x1 . . . xM represent the amount of i-th security owned.

The expected return of the portfolio is

R̄P = E(
M∑
i

xiRij) =
M∑
i

E(xiRij) =
M∑
i

(xiR̄i)

using linearity of expected returns. The variance of the portfolio is equal to

σ2
P = E(RP − R̄P )2 = E[

M∑
i

xi(Rij − R̄i)]2

In the case of a 2-asset portfolio, this can be reduced to

σ2
P = x2

1σ
2
1 + 2x1x2E[(R1j − R̄1)(R2j − R̄2)] + x2

2σ
2
2

The term E[(R1j − R̄1)(R2j − R̄2)] is called covariance and can be indicated as

σ12. It is now clear that the covariance measures how two assets are linked

to each other. Rescaling this measure in order to let it range in [−1, 1] it is

possible to introduce the correlation coefficient

ρik = σik

σiσk

If asset i and j have a correlation coefficient of 0 it means that they are

independent one from another, if it is 1 that they behave in the same way,

while if it is -1 that they have opposite trends.

An investor strategy then would be to find the minimum variance portfolio,

that is the portfolio that provides the highest return for the lowest volatility.

Of course different compositions are to be expected depending on what is the

highest level of risk an investor is willing to face. In [Figure A.1] it is possible

to see how returns are vary based on portfolios’ variances. The frontier of
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Figure A.1.: Examples of return and variance based on portfolios with three assets.

this set denotes the so called efficient frontier, where each pair represents

the characteristic of a specific portfolio. Therefore an investor will choose

their portfolio amongst those belonging to it. It is important to specify that

efficient frontiers have different, but similar, aspects depending on what type

of securities are considered: having a risk-free asset or considering short selling

will allow for a more vast set of possible combinations. As it is noticeable, the

efficient frontier draws a concave line, hence delimiting a convex set. Hence

the the research for optimal portfolios reduces itself to the following convex

problem 
max R̄P = x1R̄1 + · · · + xM R̄M

min σ2
P =

M∑
i=1

(x2
i σ

2
i ) +

M∑
i=1

M∑
j=1
j ̸=i

(xixjσij) (A.1)

that has theoretical solutions via the implicit function theorem. The solution is

then obtain solving a set of linear equations that can be delegated to computers.
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