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Introduzione

La risoluzione di equazioni differenziali ordinarie, note anche come ODE nella terminologia ingle-
se, interessa vari campi negli ambiti scientifici. Spesso si conoscono informazioni che riguardano
lo sviluppo di un fenomeno nel tempo o nello spazio e si cerca un modello matematico per poter
prevedere a partire da queste informazioni il comportamento generale del fenomeno. Tra i vari
metodi per le risoluzioni di ODE prendiamo in esame il metodo di Galérkin.

Metodo di Galérkin

Dato un problema definito su uno spazio di Hilbert H, data una forma bilineare a(-,-) : HxH — R
ed una forma lineare [(-), si vuole risolvere 'equazione

a(u,v) =1(v) Yve H (1)

Il metodo di Galérkin prevede di effettuare la discretizzazione del problema per trovare una
soluzione approssimata su una sequenza di sottospazi H, C H tale che:

oo
UHn:H

Su ciascuno di questi sottospazi il problema ¢é risolvibile in modo esatto. Il nuovo problema
derivato dalla discretizzazione del dominio, richiede la determinazione della soluzione u,, tale che

a(up,v) = 1(v) Vv e Hy

Essendo H,, di dimensione finita € possibile determinare una base finita {vl}f\gl Poiche wu,,
appartiene a H,,, si puo scrivere u,, come combinazione lineare degli elementi della base di Hy:

Nn
Up — Z CjUj (2)
j=1

Sostituendo (2) in (1) e sfruttando la linearita di a otteniamo la seguente:

Nn
Za(vj,v)‘cj:l(v) Vv € Hy,
j=1
Poiche vale Vv € H,,, sara vera anche per gli elementi della base v; con:=1,..., N,
Nn
Za(vj,vi)-cj:l(vi) i=1,...,N,
j=1

Questo risultato ci permette di dire che, fissata una base {vi}finl la determinazione della soluzione
discretizzata u,, si riduce alla risoluzione del sistema lineare in forma matriciale

K, X, =F;,
con la seguente notazione:
e K, = {/{:ij}fvle con k;; = a(vj,v;) (matrice di rigidezza)
o Fo, = {fi}Y" con f; = I(v;) (vettore dei termini noti)
o X, = {c;} (vettore dei coefficienti )



Ortogonalita di Galérkin

Notiamo che la differenza u — u,, soddisfa la proprieta nota come ortogonalita di Galérkin:
a(u — Up, vp) = a(u, vy) — a(tn, vy) = U(vy) — l(vy) =0 Yo, € Hy

Ovvero il residuo v — u,, € ortogonale al sottospazio H, C H.

Problemi differenziali ai limiti

I problemi differenziali ai limiti sono quelli nei quali all’equazione differenziale definita in un
insieme [a, b], vengono assegnate delle condizioni sulla soluzione agli estremi dell’intervallo (detti
anche [imiti), note in letteratura come condizioni al contorno di Dirichlet.

N.B.: poiché stiamo considerando equazioni differenziali lineari non é restrittivo considerare
condizioni omogenee. Infatti dato il problema

dove L é un operatore differenziale lineare, possiamo facilmente passare al problema omogeneo,
considerando .
-z r—a
T)=u(r) — (o +
y(z) = u(x) — (a7 — +p7—

)

Infatti . 5
—x Tr—a -«
Ly(a) = (@) + oy 4 4204 P20 ) vaefal

yla) =u(a) —a=0  y(b) =u(b) -F=0

Consideriamo dunque da questo punto in poi, il solo caso dei problemi ai limiti con condizioni
omogenee.




Parte 1
Applicazione per problemi differenziali ai limiti

In questo elaborato si considerano equazioni differenziali del tipo

{_U"@ + u(x)_: fl@)  z€lal (3)
u(a) = O,U(b) =0

ovvero equazioni differenziali del secondo ordine con condizioni omogenee. Per semplificare la
. . . "
notazione consideriamo Lu(x) = —u (z) + u(z),

1 Risoluzione tramite metodo di Galérkin

Poniamoci nello spazio H}([a, b]), dove con H! si indica lo spazio di Sobolev W12([a, b]) (che in
particolare ¢ spazio di Hilbert) e con Hy si indica il fatto che la soluzione ha traccia nulla agli
estremi.

Passiamo ora al problema debole di (3) proiettando tramite il prodotto scalare in L?

b
(Foz= [ 19
Abbiamo cosi la forma bilineare a(-,-) e I(+)

b
a(Lu,v) = (Lu,v)r2 l(v) = / f-o

in uno spazio di Hilbert.
Consideriamo H,, C H lo spazio delle B-splines lineari su una mesh creata dalla suddivisione di

b—
[a,b] in n intervalli [t;,t; + k|, h = ? coni= 0,...n—1

Dunque gli elementi della base di Hn?sono le splines lineari ¢; con ¢ =0, ...,n. Dovremo quindi
trovare la soluzione discretizzata u,(x), combinazione lineare degli elementi della base H,.
Imponendo pero le condizioni al bordo, che u,, dovra soddisfare per essere soluzione, sappiamo a
priori che i contributi di ¢g e ¢, saranno nulli. Dunque possiamo limitarci a considerare le sole
©i z':l,...,n—l.

Definiamo il residuo Res(x) := Lu(z) — Lu,(x). Applicando I'ortogonalita di Galérkin al residuo
rispetto alle ¢;, otteniamo

(Res, o) — /ab(Lu(x)—Lun(x))-goi(x)dx _ /ab(f(x)—Lun(x))-gpi(x)dx R T
Ovvero b b
/a Lun(:c)-gpi(:n)dz::/a f@) - oi(@)de i=1,...n—1
Sostituendo Ioperatore Lun (z)
b b
/a (=’ (2) + un(2) - i(2)dz = / f@) - pi@de =1, m—1 (4)

integrando per parti il membro di sinistra

b

b b
—u%(az)-«p;|z+/ u;(m)gp;(x)dx—l—/ un(x)-goi(x)dx:/ f(x)-pi(x)dx i=1,...,n—1
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per la struttura delle splines (che sono note)

b ) b
/ u,, () -goi(x)—kun(:c)-(pi(x)dw:/ f(@)-pi(x)de i=1,...,n—1 (5)

n—1
Poiche u,, € H,, u, = Z ¢j - pj(x). Quindi
j=1

n—1

b , , b
Cj/ wj(w)-soi(w)+<pj(w)-<m(w)dx:/ f@)-gi(z)de i=1,...,n—1  (6)

j=1
Per la struttura delle splines, la (6) si riduce a

i+1

b
Z cj/ <pj z) + pj(x) @i(x)dac:/ f(z) - pi(x)dx i=1,...,n—1

Jj=i—1 a

Poiché le splines lineari sono state costruite su una mesh a nodi equispaziati con passo h, esse
possono essere viste come ottenute da traslazioni di un’unica spline. Questa osservazione ci
permette di dire che é sufficiente il calcolo dell’integrale per ¢ = 1. I calcoli svolti sono visibili
nell’Appendice (vedere (12))

Sostituendo nella (6) i risultati ottenuti

h 1 2 .
Cifl(g_ﬁ)"i'cz(h"i' h)+cz+1 /f ‘pl i1=1,...,n—1

Moltiplicando entrambi i membri per h
2

Cim1(— —

2
G 1)+ci(2+§h)+cz+1 - —h/f iz i=1,...,n—1 (7)

Scriviamo il risultato in forma matriciale

A-c=b
-(2+§h2) (f?—l) 0 0 _
h? 2 h?
(5~ (2+§h2) (5~ 0 - : ,
h? 2 h? . : h [, f(z) - ¢1(z)dz
A_ 0 (-1 @+30) (x-1 : : b :
0 0 hfbf(m)¢n,1(x)dw
2 2 a
: R A (S )
0 0 (%—1) (2+§h2)_

Risolvendo il sistema, ricaviamo il vettore c che ci permette di determinare la soluzione discreta

n—1
Up = E C; - Ps-
=1



Parte 11
Codice MatLab

Procediamo col mostrare il codice MatLab che implementa la risoluzione del problema (3) tenendo
conto delle considerazioni fatte sulla matrice A e di conseguenza sul vettore b in quanto entrambi
i membri sono stati moltiplicati per h. Per il calcolo dei vari integrali si é utilizzata la function
predefinita trapz.m.

Metodo di Galérkin con calcolo analitico della matrice A

function [u]=Galerkin_limiti(a,b,f,N,xx)

%Metodo di Galerkin per la risoluzione di equazioni differenziali del
%secondo ordine del tipo —u''+u=f, con u(a)=u(b)=0

%I1 calcolo dell'integrale e' stato effettuato in modo analitico
%INPUT: a,b estremi

f membro di destra dell'ODE

N numero di intervalli in cui viene diviso [a,b]

xx nodi in cui viene calcolato il valore di u

%0UTPUT:u calcolato nei nodi xx

o® d° of

o°

%Vettore dei nodi che divide [a,b] in N intervalli
x=linspace(a,b,N+1);

%Matrice delle splines lineari sulla mesh x, calcolate in xx
YY=Base_Splines_Lineari(x,xx);

%Viene calcolato il valore di f sul vettore xx

yy_es=f(xx);

%Calcolo del valore del passo h

h=(b—a)/N;

%Creiamo alfa e beta, che costituiscono le diagonali di A tridiagonale
%simmetrica

beta=(—1+h"2/6)*ones(1,N—-2);

alfa=(2+2/3%h"2)*ones(1,N—1);

A=diag(alfa)+diag(beta,—1)+diag(beta,l);

d=zeros(1,N—1);

for i=1:N—1
%Integrale di f per le splines lineari moltiplicato per h
d(i)=h*xtrapz(xx,yy_es.xYY(i+l,:));

end

%Risolviamo il sistema lineare
c=A\d";
%Ricostruiamo il vettore dei coefficienti aggiungento c_ @ e c_N per ipotesi
snulli
Coeff=[0, c', 0];
u=zeros(1l,length(xx));
%Calcolo della soluzione approssimata
for i=1:(N+1)
u=u+Coeff(1i)*YY(i,:);
end

2 Esempio

Procediamo con il calcolo di

—u(z) +u(z)=1—z x € [—10,0]
u(—10) = 0,u(0) =0

La cui soluzione esatta &
r—1

U(CC) — 1 + 11610—66 _ e—x _ 11610+CE + 620+Z‘ + 620m




La soluzione approssimata tramite metodo di Galérkin

Grafico per N= 24

——Soluzione esatta
——-Soluzione analitica problema debole

Vediamo dunque che lo soluzione u,, fornisce una buona approssimazione della soluzione esatta
u gia per N non elevati.

Possiamo apprezzare maggiormente la convergenza del metodo nelle animazioni presenti in Ap-
pendice.

Studiamo ora la convergenza e 1’ordine del metodo di Galérkin. Notiamo che é si ottiene lo stesso
risultato se si aumenta il numero di sottointervalli in cui dividiamo [a, b]

en = |u — up| per N — oo

o se studiamo la convergenza al diminuire di A, in quanto

b—a

h:T:>h—>O per N — o0

li =
fimexy =0

Analiziamo 'ordine di convergenza dimezzando h. Cosi facendo, poiché l'errore ¢ un O(hP)
otteniamo che il rapporto

el el _op
i (D
2

Per l’esempio (8), la tabella relativa a convergenza ed ordine é la seguente (N.B per mettere in
evidenza p, il rapporto tra due errori successivi é stato normalizzato dividendo per log 2)

h Errore Ordine
5.00000000000000e—01 2.51278816394760e—01 0.00000000000000e+00
2.50000000000000e—01 7.31306983841484e—02 1.78074000788872e+00
1.25000000000000e—01 1.97935738723555e—02 1.88544501466500e+00
6.25000000000000e—02 5.15368150532786e—03 1.94135683757978e+00
3.12500000000000e—02 1.31520303313537e—03 1.97031785090035e+00
1.56250000000000e—02 3.32221952006218e—04 1.98506622174359e+00
7.81250000000000e—03 8.34878290362634e—05 1.99250960436028e+00

Risulta cosi evidente che il metodo di Galérkin ¢ convergente e ha ordine 2.
E opportuno fare ora un’osservazione sui passaggi svolti per trovare la soluzione approssima-
ta uy: per calcolare la matrice di rigidezza abbiamo seguito un approccio analitico sfruttando



I’ equispazialita dei nodi della mesh su cui abbiamo costruito le B-splines lineari. Ma cosa succede
se invece di fare considerazioni di tipo analitico calcoliamo il valore di (6) con una formula di
quadratura (ad es. la function trapz.m di MatLab)? Il codice MatLab per questa soluzione viene

fornito in Appendice.
In figura le due soluzioni a confronto
Grafico per N= 24

o
S ——Soluzione problema debole con quadratura,
~ T . iy -
——Soluzione analitica problema debole
Soluzione esatta,

Graficamente non notiamo grosse differenze tra le due soluzioni. E perd curioso sottolineare come
nei primi nodi la soluzione trovata con la function che sfrutta la quadratura piuttosto che i risul-
tati analitici, approssimi in modo migliore u. Questa differenza si assottiglia nei nodi centrali fino
a che il metodo con quadratura restituisce una peggiore approssimazione. Ne possiamo osservare

il comportamento nella seguente

Sviluppo errore per N= 24

——Errore con quadratura
——Errore con calcolo analitico
Errore tra i due metodi

u(@) = un()

e MN/\N\/\J
5 - 3 2 ! ’
z

Bisogna pero chiarire che questo comportamento cambia drasticamente al crescere di N. Infatti
come mostra la successiva immagine notiamo che la tendenza osservata precedentemente si in-

verte per IN sufficientemente grandi.



Sviluppo errore per N= 500

0012 —

——Errore con quadratura
——Errore con calcolo analitico
Errore tra i due metodi

0.008 [— I|

up ()

oms=

u(x)

0.004 [—

0002 —

oiﬂ"f\'\'ﬁ\\lTIlIIIA&!\\\\vwn::»- " | e B ! \ I ]

-10 9 8 7 © 5 4 3 2 Bl 0

Confrontiamo anche la convergenza e l'ordine tra le due scelte e mostriamo come per h sufficien-
temente piccoli, il metodo con calcoli analitici ha ordine doppio rispetto a quello con formula di
quadratura

N h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura
2.0000e+01 5.0000e—01 2.2842e—02 2.2874e—02 1.7807e+00 1.2565e+00
4.0000e+01 2.5000e—01 6.6481e—03 9.5740e—03 1.8854e+00 7.9663e—01
8.0000e+01 1.2500e—01 1.7994e—03 5.5117e—03 1.9413e+00 8.7867e—01
1.6000e+02 6.2500e—02 4.6851e—04 2.9976e—03 1.9703e+00 9.3458e—01
3.2000e+02 3.1250e—02 1.1956e—04 1.5683e—03 1.9851e+00 9.6613e—01
6.4000e+02 1.5625e—02 3.0202e—05 8.0279%9e—04 1.9925e+00 9.8278e—01
1.2800e+03 7.8125e—03 7.5898e—06 4.0622e—04 1.9962e+00 9.9132e—01
2.5600e+03 3.9063e—03 1.9024e—06 2.0433e—04 1.9981e+00 9.9564e—01
5.1200e+03 1.9531e—03 4.7622e—07 1.0248e—04 0.0000e+00 0.0000e+00

E evidente quindi che lo sforzo analitico compiuto viene premiato e in modo significativo. Questo
risultato, ragionevole, &€ dovuto al fatto che il metodo di quadratura porta con sé un errore dovuto
al calcolo dell’integrale tramite metodi numerici che si somma all’errore di discretizzazione.

3 Ulteriori esempi

Consideriamo il seguente
—u (z)+u(z) =1¢€[-3,3
(=3)=0,u(3)=0

e

La cui soluzione esatta &
—e37T — T3 4 1 4

1+ e




La soluzione approssimata é mostra in figura

Grafico per N= 40

——Soluzione esatta
——-Soluzione analitica problema debole

— 05— / \

e possiamo ancora una volta confrontare gli errori e gli ordini

h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura
5.0000e—01 2.2817e—02 2.2825e—02 1.7798e+00 1.2586e+00
2.5000e—01 6.6450e—03 9.5397e—03 1.8851e+00 7.9832e—01
1.2500e—01 1.7990e—03 5.4855e—03 1.9412e+00 8.7891e—01
6.2500e—02 4.6847e—04 2.9829e—03 1.9702e+00 9.3458e—01
3.1250e—02 1.1956e—04 1.5606e—03 1.9850e+00 9.6610e—01
1.5625e—02 3.0201e—05 7.9887e—04 1.9925e+00 9.8276e—01
7.8125e—03 7.5897e—06 4.0424e—04 1.9962e+00 9.9131e—01
3.9063e—03 1.9024e—06 2.0334e—04 1.9981e+00 9.9564e—01
1.9531e—03 4.7622e—07 1.0198e—04 0.0000e+00 0.0000e+00

Notiamo che in (9) I'intervallo ¢ simmetrico e che f(z) & di classe C'([-3, 3]).

Abbiamo dunque analizzato un caso con 'intervallo interamente negativo (I’esempio (8)) e uno

con intervallo simmetrico. Prendiamo in esame ora
—u"(z) + u(z) = 2* € [0,1]
u(0) =0,u(l) =0
Troviamo che ha soluzione

_p3e— 2¢2 + 262 — 3elt2z _ e’(2 4+ :1:2) + 62‘”“(2 + x2)
ez —1

u(z) =e

Di seguito il grafico di u,



Grafico per N= 40

004 —
——Soluzione esatta
—— -Soluzione analitica problema debole
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Interessante in questo caso é la tabella dell’errore

N h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura
2.0000e+00 5.0000e—01 1.6800e—02 1.6488e—02 1.5456e+00 1.5441e+00
4.0000e+00 2.5000e—01 5.7551e—03 5.6539e—03 1.7764e+00 1.7728e+00
8.0000e+00 1.2500e—01 1.6799e—03 1.6546e—03 1.8906e+00 1.8891e+00
1.6000e+01 6.2500e—02 4.5306e—04 4.4670e—04 1.9458e+00 1.9451e+00
3.2000e+01 3.1250e—02 1.1760e—04 1.1600e—04 1.9730e+00 9.7483e—01
6.4000e+01 1.5625e—02 2.9954e—05 5.9023e—05 1.9866e+00 9.8475e—01
1.2800e+02 7.8125e—03 7.5587e—06 2.9825e—05 1.9933e+00 9.9229e—01
2.5600e+02 3.9063e—03 1.8985e—06 1.4992e—05 1.9966e+00 9.9613e—01
5.1200e+02 1.9531e—03 4.7573e—07 7.5163e—06 1.9983e+00 9.9806e—01
1.0240e+03 9.7656e—04 1.1907e—07 3.7632e—06 1.9992e+00 9.9903e—01
2.0480e+03 4.8828e—04 2.9785e—08 1.8829e—06 1.9996e+00 9.9951e—01
4.0960e+03 2.4414e—04 7.4484e—09 9.4176e—07 0.0000e+00 0.0000e+00

Poiché l'intervallo ha ampiezza 1, gia per N = 2 otteniamo un soluzione approssimata molto
vicina alla soluzione u. Questo ¢ dovuto al fatto che per N = 2 il valore del passo ¢ dell’ordine
di 1071

Come ultimo caso studiamo il caso in cui f sia una funzione C*

Consideriamo

La cui soluzione &

(e'? — 1)e®cos(z) — e2*+7cos(5) + €2 Tlcos(1) + ePcos(5) — ellcos(1)
2(el?2 — 1)

—T

u(z) =e

In questo caso la soluzione assume anche valori negativi nel nostro intervallo. Vediamo ora il
grafico della soluzione esatta e di quella approssimata

10



Grafico per N= 20

——Soluzione esatta
—— -Soluzione analitica problema debole

u()
~

Notiamo ancora una volta che l'esito della tabella dell’errore e dell’ordine ¢ in linea con le
precedenti

h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura
5.0000e—01 1.6080e—02 1.2780e—02 1.9752e+00 8.8518e—01
2.5000e—01 4.0899e—03 6.9193e—03 1.9802e+00 8.3778e—01
1.2500e—01 1.0366e—03 3.8714e—03 1.9879e+00 8.9283e—01
6.2500e—02 2.6132e—04 2.0850e—03 1.9934e+00 9.4042e—01
3.1250e—02 6.5633e—05 1.0864e—03 1.9965e+00 9.6880e—01
1.5625e—02 1.6448e—05 5.5510e—04 1.9982e+00 9.8406e—01
7.8125e—03 4.1170e—06 2.8063e—04 1.9991e+00 9.9194e—01
3.9063e—03 1.0299e—06 1.4110e—04 1.9995e+00 9.9595e—01
1.9531e—03 2.5756e—07 7.0749e—05 0.0000e+00 0.0000e+00

Parte II1
Conclusioni

N

Dallo studio degli esempi considerati possiamo dire che il metodo implementato ¢ consisten-
te al variare di f(x) (sufficientemente regolare) e degli estremi a e b. Si & anche intrapreso lo
studio per f(z) = —, nell'intervallo [—1,1]. Il metodo implementato in questo caso fallisce la

rappresentazione della soluzione in quanto vengono restituiti valori logici Na/N dovuti alla di-
scontinuita nell’origine. Risolvendo lo stesso problema in [1,2] riusciamo perd ad ottenere una
buona approssimazione, poiché in tale intervallo la funzione risulta di classe C**°.
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Parte IV
Appendice

3.1 Calcolo integrale
Calcolodi (6) peri=1lej=id,j=1i+1

b b
c1 / () - 05(x) + (@) - i(a)d + 02/ 0;(x) - 05(x) + 0(x) - pi(x)dr =

x1+2h 1 xr1+h o x1+2h o h
cl(/ —dzr + / (%)Qdac + / (—u + 2)%dx)+

1 h? 1 1+h h (12)
N (/““h_llﬂ_wm (Em by
A )osn  hh h h v =
2 2 ho1
Cl(ﬁ + §h> + 02(6 — E)

3.2 Animazioni convergenza

Vengono mostrati di seguito le animazioni degli esempi trattati in questo elaborato, per mostrare
come al crescere di N la soluzione u,, si avvicina alla soluzione esatta

Animazione per soluzione u,, relativa a (8)

Grafico per N= 2
T
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Animazione per soluzione u,, relativa a (9)

Grafico per N= 2
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Animazione per soluzione u, relativa a (10)

Grafico per N= 2
T

N
V% N
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Animazione per soluzione u, relativa a (11)

Grafico per N= 2
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