
Progetto Analisi Numerica

Condurachi Alexei

17 luglio 2020



Introduzione
La risoluzione di equazioni differenziali ordinarie, note anche come ODE nella terminologia ingle-
se, interessa vari campi negli ambiti scientifici. Spesso si conoscono informazioni che riguardano
lo sviluppo di un fenomeno nel tempo o nello spazio e si cerca un modello matematico per poter
prevedere a partire da queste informazioni il comportamento generale del fenomeno. Tra i vari
metodi per le risoluzioni di ODE prendiamo in esame il metodo di Galërkin.

Metodo di Galërkin

Dato un problema definito su uno spazio di Hilbert H, data una forma bilineare a(·, ·) : H×H → R
ed una forma lineare l(·), si vuole risolvere l’equazione

a(u, v) = l(v) ∀v ∈ H (1)

Il metodo di Galërkin prevede di effettuare la discretizzazione del problema per trovare una
soluzione approssimata su una sequenza di sottospazi Hn ⊂ H tale che:

∞⋃
Hn = H

Su ciascuno di questi sottospazi il problema è risolvibile in modo esatto. Il nuovo problema
derivato dalla discretizzazione del dominio, richiede la determinazione della soluzione un tale che

a(un, v) = l(v) ∀v ∈ Hn

Essendo Hn di dimensione finita è possibile determinare una base finita {vi}Nn
i=1. Poichè un

appartiene a Hn, si può scrivere un come combinazione lineare degli elementi della base di Hn:

un =

Nn∑
j=1

cjvj (2)

Sostituendo (2) in (1) e sfruttando la linearità di a otteniamo la seguente:

Nn∑
j=1

a(vj , v) · cj = l(v) ∀v ∈ Hn

Poichè vale ∀v ∈ Hn, sarà vera anche per gli elementi della base vi con i = 1, . . . , Nn

Nn∑
j=1

a(vj , vi) · cj = l(vi) i = 1, . . . , Nn

Questo risultato ci permette di dire che, fissata una base {vi}Nn
i=1 la determinazione della soluzione

discretizzata un si riduce alla risoluzione del sistema lineare in forma matriciale

Kn ·Xn = Fn

con la seguente notazione:

• Kn = {kij}Nn
i,j=1 con kij = a(vj, vi) (matrice di rigidezza)

• Fn = {fi}Nn
i=1 con fi = l(vi) (vettore dei termini noti)

• Xn = {ci}Nn
i=1 (vettore dei coefficienti )
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Ortogonalità di Galërkin

Notiamo che la differenza u− un soddisfa la proprietà nota come ortogonalità di Galërkin:

a(u− un, vn) = a(u, vn)− a(un, vn) = l(vn)− l(vn) = 0 ∀vn ∈ Hn

Ovvero il residuo u− un è ortogonale al sottospazio Hn ⊂ H.

Problemi differenziali ai limiti

I problemi differenziali ai limiti sono quelli nei quali all’equazione differenziale definita in un
insieme [a, b], vengono assegnate delle condizioni sulla soluzione agli estremi dell’intervallo (detti
anche limiti), note in letteratura come condizioni al contorno di Dirichlet.
N.B.: poichè stiamo considerando equazioni differenziali lineari non è restrittivo considerare
condizioni omogenee. Infatti dato il problema{

Lu(x) = f(x) ∀x ∈ [a, b]

u(a) = α, u(b) = β

dove L è un operatore differenziale lineare, possiamo facilmente passare al problema omogeneo,
considerando

y(x) = u(x)− (α
b− x
b− a

+ β
x− a
b− a

)

Infatti Ly(x) = f(x) + α
b− x
b− a

+ β
x− a
b− a

+
β − α
b− a

=: g(x) ∀x ∈ [a, b]

y(a) = u(a)− α = 0 y(b) = u(b)− β = 0

Consideriamo dunque da questo punto in poi, il solo caso dei problemi ai limiti con condizioni
omogenee.
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Parte I

Applicazione per problemi differenziali ai limiti
In questo elaborato si considerano equazioni differenziali del tipo{

−u′′
(x) + u(x) = f(x) x ∈ [a, b]

u(a) = 0, u(b) = 0
(3)

ovvero equazioni differenziali del secondo ordine con condizioni omogenee. Per semplificare la
notazione consideriamo Lu(x) = −u′′

(x) + u(x),

1 Risoluzione tramite metodo di Galërkin

Poniamoci nello spazio H1
0 ([a, b]), dove con H1 si indica lo spazio di Sobolev W 1,2([a, b]) (che in

particolare è spazio di Hilbert) e con H0 si indica il fatto che la soluzione ha traccia nulla agli
estremi.
Passiamo ora al problema debole di (3) proiettando tramite il prodotto scalare in L2

(f, g)L2 =

∫ b

a
f · g

Abbiamo così la forma bilineare a(·, ·) e l(·)

a(Lu, v) = (Lu, v)L2 l(v) =

∫ b

a
f · v

in uno spazio di Hilbert.
Consideriamo Hn ⊂ H lo spazio delle B-splines lineari su una mesh creata dalla suddivisione di

[a, b] in n intervalli [ti, ti + h], h =
b− a
n

con i = 0, . . . n− 1.
Dunque gli elementi della base di Hn, sono le splines lineari ϕi con i = 0, . . . , n. Dovremo quindi
trovare la soluzione discretizzata un(x), combinazione lineare degli elementi della base Hn.
Imponendo però le condizioni al bordo, che un dovrà soddisfare per essere soluzione, sappiamo a
priori che i contributi di ϕ0 e ϕn saranno nulli. Dunque possiamo limitarci a considerare le sole
ϕi i = 1, . . . , n− 1.
Definiamo il residuo Res(x) := Lu(x)−Lun(x). Applicando l’ortogonalità di Galërkin al residuo
rispetto alle ϕi, otteniamo

(Res, ϕi) =

∫ b

a
(Lu(x)−Lun(x)) ·ϕi(x)dx =

∫ b

a
(f(x)−Lun(x)) ·ϕi(x)dx = 0 i = 1, . . . , n−1

Ovvero ∫ b

a
Lun(x) · ϕi(x)dx =

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1

Sostituendo l’operatore Lun(x)∫ b

a
(−u′′

n(x) + un(x)) · ϕi(x)dx =

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1 (4)

integrando per parti il membro di sinistra

−u′
n(x) ·ϕ

′
i

∣∣b
a
+

∫ b

a
u

′
n(x) ·ϕ

′
i(x)dx+

∫ b

a
un(x) ·ϕi(x)dx =

∫ b

a
f(x) ·ϕi(x)dx i = 1, . . . , n− 1
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per la struttura delle splines (che sono note)∫ b

a
u

′
n(x) · ϕ

′
i(x) + un(x) · ϕi(x)dx =

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1 (5)

Poichè un ∈ Hn, un =
n−1∑
j=1

cj · ϕj(x). Quindi

n−1∑
j=1

cj

∫ b

a
ϕ

′
j(x) · ϕ

′
i(x) + ϕj(x) · ϕi(x)dx =

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1 (6)

Per la struttura delle splines, la (6) si riduce a

i+1∑
j=i−1

cj

∫ b

a
ϕ

′
j(x) · ϕ

′
i(x) + ϕj(x) · ϕi(x)dx =

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1

Poichè le splines lineari sono state costruite su una mesh a nodi equispaziati con passo h, esse
possono essere viste come ottenute da traslazioni di un’unica spline. Questa osservazione ci
permette di dire che è sufficiente il calcolo dell’integrale per i = 1. I calcoli svolti sono visibili
nell’Appendice (vedere (12))
Sostituendo nella (6) i risultati ottenuti

ci−1(
h

6
− 1

h
) + ci(

2

h
+

2

3
h) + ci+1(

h

6
− 1

h
) =

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1

Moltiplicando entrambi i membri per h

ci−1(
h2

6
− 1) + ci(2 +

2

3
h2) + ci+1(

h2

6
− 1) = h

∫ b

a
f(x) · ϕi(x)dx i = 1, . . . , n− 1 (7)

Scriviamo il risultato in forma matriciale

A · c = b

A =



(2 +
2

3
h2) (

h2

6
− 1) 0 . . . . . . 0

(
h2

6
− 1) (2 +

2

3
h2) (

h2

6
− 1) 0

. . .
...

0 (
h2

6
− 1) (2 +

2

3
h2) (

h2

6
− 1)

. . .
...

... 0
. . . . . . . . . 0

...
...

. . . (
h2

6
− 1) (2 +

2

3
h2) (

h2

6
− 1)

0 . . . . . . 0 (
h2

6
− 1) (2 +

2

3
h2)


,b =

 h
∫ b
a f(x) · ϕ1(x)dx

...
h
∫ b
a f(x) · ϕn−1(x)dx



Risolvendo il sistema, ricaviamo il vettore c che ci permette di determinare la soluzione discreta

un =

n−1∑
i=1

ci · ϕi.
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Parte II

Codice MatLab
Procediamo col mostrare il codice MatLab che implementa la risoluzione del problema (3) tenendo
conto delle considerazioni fatte sulla matrice A e di conseguenza sul vettore b in quanto entrambi
i membri sono stati moltiplicati per h. Per il calcolo dei vari integrali si è utilizzata la function
predefinita trapz.m.

Metodo di Galërkin con calcolo analitico della matrice A
1 function [u]=Galerkin_limiti(a,b,f,N,xx)
2 %Metodo di Galerkin per la risoluzione di equazioni differenziali del
3 %secondo ordine del tipo −u''+u=f, con u(a)=u(b)=0
4 %Il calcolo dell'integrale e' stato effettuato in modo analitico
5 %INPUT: a,b estremi
6 % f membro di destra dell'ODE
7 % N numero di intervalli in cui viene diviso [a,b]
8 % xx nodi in cui viene calcolato il valore di u
9 %OUTPUT:u calcolato nei nodi xx

10
11 %Vettore dei nodi che divide [a,b] in N intervalli
12 x=linspace(a,b,N+1);
13 %Matrice delle splines lineari sulla mesh x, calcolate in xx
14 YY=Base_Splines_Lineari(x,xx);
15 %Viene calcolato il valore di f sul vettore xx
16 yy_es=f(xx);
17 %Calcolo del valore del passo h
18 h=(b−a)/N;
19
20 %Creiamo alfa e beta, che costituiscono le diagonali di A tridiagonale
21 %simmetrica
22 beta=(−1+h^2/6)*ones(1,N−2);
23 alfa=(2+2/3*h^2)*ones(1,N−1);
24
25 A=diag(alfa)+diag(beta,−1)+diag(beta,1);
26
27 d=zeros(1,N−1);
28 for i=1:N−1
29 %Integrale di f per le splines lineari moltiplicato per h
30 d(i)=h*trapz(xx,yy_es.*YY(i+1,:));
31 end
32
33 %Risolviamo il sistema lineare
34 c=A\d';
35 %Ricostruiamo il vettore dei coefficienti aggiungento c_0 e c_N per ipotesi
36 %nulli
37 Coeff=[0, c', 0];
38 u=zeros(1,length(xx));
39 %Calcolo della soluzione approssimata
40 for i=1:(N+1)
41 u=u+Coeff(i)*YY(i,:);
42 end

2 Esempio

Procediamo con il calcolo di{
−u′′

(x) + u(x) = 1− x x ∈ [−10, 0]
u(−10) = 0, u(0) = 0

(8)

La cui soluzione esatta è

u(x) = 1 + 11e10−x − e−x − 11e10+x + e20+x + e20
x− 1

1− e20
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La soluzione approssimata tramite metodo di Galërkin
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Vediamo dunque che lo soluzione un fornisce una buona approssimazione della soluzione esatta
u già per N non elevati.
Possiamo apprezzare maggiormente la convergenza del metodo nelle animazioni presenti in Ap-
pendice.
Studiamo ora la convergenza e l’ordine del metodo di Galërkin. Notiamo che è si ottiene lo stesso
risultato se si aumenta il numero di sottointervalli in cui dividiamo [a, b]

eN = |u− un| per N →∞

o se studiamo la convergenza al diminuire di h, in quantoh =
b− a
N

=⇒ h→ 0 per N →∞

lim
h→0

eN(h) = 0

Analiziamo l’ordine di convergenza dimezzando h. Così facendo, poichè l’errore è un O(hp)
otteniamo che il rapporto

epi
epi+1

=
epi

(
ei
2
)p

= 2p

Per l’esempio (8), la tabella relativa a convergenza ed ordine è la seguente (N.B per mettere in
evidenza p, il rapporto tra due errori successivi è stato normalizzato dividendo per log 2)

h Errore Ordine
____________________ ____________________ ____________________

5.00000000000000e−01 2.51278816394760e−01 0.00000000000000e+00
2.50000000000000e−01 7.31306983841484e−02 1.78074000788872e+00
1.25000000000000e−01 1.97935738723555e−02 1.88544501466500e+00
6.25000000000000e−02 5.15368150532786e−03 1.94135683757978e+00
3.12500000000000e−02 1.31520303313537e−03 1.97031785090035e+00
1.56250000000000e−02 3.32221952006218e−04 1.98506622174359e+00
7.81250000000000e−03 8.34878290362634e−05 1.99250960436028e+00

Risulta così evidente che il metodo di Galërkin è convergente e ha ordine 2.
È opportuno fare ora un’osservazione sui passaggi svolti per trovare la soluzione approssima-
ta un: per calcolare la matrice di rigidezza abbiamo seguito un approccio analitico sfruttando
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l’equispazialità dei nodi della mesh su cui abbiamo costruito le B-splines lineari. Ma cosa succede
se invece di fare considerazioni di tipo analitico calcoliamo il valore di (6) con una formula di
quadratura (ad es. la function trapz.m di MatLab)? Il codice MatLab per questa soluzione viene
fornito in Appendice.
In figura le due soluzioni a confronto
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Graficamente non notiamo grosse differenze tra le due soluzioni. È però curioso sottolineare come
nei primi nodi la soluzione trovata con la function che sfrutta la quadratura piuttosto che i risul-
tati analitici, approssimi in modo migliore u. Questa differenza si assottiglia nei nodi centrali fino
a che il metodo con quadratura restituisce una peggiore approssimazione. Ne possiamo osservare
il comportamento nella seguente

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

0
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0.1

0.12
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Bisogna però chiarire che questo comportamento cambia drasticamente al crescere di N . Infatti
come mostra la successiva immagine notiamo che la tendenza osservata precedentemente si in-
verte per N sufficientemente grandi.
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Confrontiamo anche la convergenza e l’ordine tra le due scelte e mostriamo come per h sufficien-
temente piccoli, il metodo con calcoli analitici ha ordine doppio rispetto a quello con formula di
quadratura

N h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura
__________ __________ ________________ _________________ _______________ _________________

2.0000e+01 5.0000e−01 2.2842e−02 2.2874e−02 1.7807e+00 1.2565e+00
4.0000e+01 2.5000e−01 6.6481e−03 9.5740e−03 1.8854e+00 7.9663e−01
8.0000e+01 1.2500e−01 1.7994e−03 5.5117e−03 1.9413e+00 8.7867e−01
1.6000e+02 6.2500e−02 4.6851e−04 2.9976e−03 1.9703e+00 9.3458e−01
3.2000e+02 3.1250e−02 1.1956e−04 1.5683e−03 1.9851e+00 9.6613e−01
6.4000e+02 1.5625e−02 3.0202e−05 8.0279e−04 1.9925e+00 9.8278e−01
1.2800e+03 7.8125e−03 7.5898e−06 4.0622e−04 1.9962e+00 9.9132e−01
2.5600e+03 3.9063e−03 1.9024e−06 2.0433e−04 1.9981e+00 9.9564e−01
5.1200e+03 1.9531e−03 4.7622e−07 1.0248e−04 0.0000e+00 0.0000e+00

È evidente quindi che lo sforzo analitico compiuto viene premiato e in modo significativo. Questo
risultato, ragionevole, è dovuto al fatto che il metodo di quadratura porta con sè un errore dovuto
al calcolo dell’integrale tramite metodi numerici che si somma all’errore di discretizzazione.

3 Ulteriori esempi

Consideriamo il seguente {
−u′′

(x) + u(x) = 1 ∈ [−3, 3]
u(−3) = 0, u(3) = 0

(9)

La cui soluzione esatta è

u(x) =
−e3−x − ex+3 + 1 + e6

1 + e6
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La soluzione approssimata è mostra in figura
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e possiamo ancora una volta confrontare gli errori e gli ordini
h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura

__________ ________________ _________________ _______________ _________________

5.0000e−01 2.2817e−02 2.2825e−02 1.7798e+00 1.2586e+00
2.5000e−01 6.6450e−03 9.5397e−03 1.8851e+00 7.9832e−01
1.2500e−01 1.7990e−03 5.4855e−03 1.9412e+00 8.7891e−01
6.2500e−02 4.6847e−04 2.9829e−03 1.9702e+00 9.3458e−01
3.1250e−02 1.1956e−04 1.5606e−03 1.9850e+00 9.6610e−01
1.5625e−02 3.0201e−05 7.9887e−04 1.9925e+00 9.8276e−01
7.8125e−03 7.5897e−06 4.0424e−04 1.9962e+00 9.9131e−01
3.9063e−03 1.9024e−06 2.0334e−04 1.9981e+00 9.9564e−01
1.9531e−03 4.7622e−07 1.0198e−04 0.0000e+00 0.0000e+00

Notiamo che in (9) l’intervallo è simmetrico e che f(x) è di classe C1([−3, 3]).
Abbiamo dunque analizzato un caso con l’intervallo interamente negativo (l’esempio (8)) e uno
con intervallo simmetrico. Prendiamo in esame ora{

−u′′
(x) + u(x) = x2 ∈ [0, 1]

u(0) = 0, u(1) = 0
(10)

Troviamo che ha soluzione

u(x) = e−x
3e− 2e2 + 2e2x − 3e1+2x − ex(2 + x2) + e2+x(2 + x2)

e2 − 1

Di seguito il grafico di un
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Interessante in questo caso è la tabella dell’errore
N h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura

__________ __________ ________________ _________________ _______________ _________________

2.0000e+00 5.0000e−01 1.6800e−02 1.6488e−02 1.5456e+00 1.5441e+00
4.0000e+00 2.5000e−01 5.7551e−03 5.6539e−03 1.7764e+00 1.7728e+00
8.0000e+00 1.2500e−01 1.6799e−03 1.6546e−03 1.8906e+00 1.8891e+00
1.6000e+01 6.2500e−02 4.5306e−04 4.4670e−04 1.9458e+00 1.9451e+00
3.2000e+01 3.1250e−02 1.1760e−04 1.1600e−04 1.9730e+00 9.7483e−01
6.4000e+01 1.5625e−02 2.9954e−05 5.9023e−05 1.9866e+00 9.8475e−01
1.2800e+02 7.8125e−03 7.5587e−06 2.9825e−05 1.9933e+00 9.9229e−01
2.5600e+02 3.9063e−03 1.8985e−06 1.4992e−05 1.9966e+00 9.9613e−01
5.1200e+02 1.9531e−03 4.7573e−07 7.5163e−06 1.9983e+00 9.9806e−01
1.0240e+03 9.7656e−04 1.1907e−07 3.7632e−06 1.9992e+00 9.9903e−01
2.0480e+03 4.8828e−04 2.9785e−08 1.8829e−06 1.9996e+00 9.9951e−01
4.0960e+03 2.4414e−04 7.4484e−09 9.4176e−07 0.0000e+00 0.0000e+00

Poichè l’intervallo ha ampiezza 1, già per N = 2 otteniamo un soluzione approssimata molto
vicina alla soluzione u. Questo è dovuto al fatto che per N = 2 il valore del passo è dell’ordine
di 10−1.
Come ultimo caso studiamo il caso in cui f sia una funzione C∞

Consideriamo {
−u′′

(x) + u(x) = cos(x) ∈ [−1, 5]
u(−1) = 0, u(3) = 0

(11)

La cui soluzione è

u(x) = e−x
(e12 − 1)excos(x)− e2x+7cos(5) + e2x+1cos(1) + e5cos(5)− e11cos(1)

2(e12 − 1)

In questo caso la soluzione assume anche valori negativi nel nostro intervallo. Vediamo ora il
grafico della soluzione esatta e di quella approssimata
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Notiamo ancora una volta che l’esito della tabella dell’errore e dell’ordine è in linea con le
precedenti

h Errore Analitico Errore Quadratura Ordine Analtico Ordine Quadratura
__________ ________________ _________________ _______________ _________________

5.0000e−01 1.6080e−02 1.2780e−02 1.9752e+00 8.8518e−01
2.5000e−01 4.0899e−03 6.9193e−03 1.9802e+00 8.3778e−01
1.2500e−01 1.0366e−03 3.8714e−03 1.9879e+00 8.9283e−01
6.2500e−02 2.6132e−04 2.0850e−03 1.9934e+00 9.4042e−01
3.1250e−02 6.5633e−05 1.0864e−03 1.9965e+00 9.6880e−01
1.5625e−02 1.6448e−05 5.5510e−04 1.9982e+00 9.8406e−01
7.8125e−03 4.1170e−06 2.8063e−04 1.9991e+00 9.9194e−01
3.9063e−03 1.0299e−06 1.4110e−04 1.9995e+00 9.9595e−01
1.9531e−03 2.5756e−07 7.0749e−05 0.0000e+00 0.0000e+00

Parte III

Conclusioni
Dallo studio degli esempi considerati possiamo dire che il metodo implementato è consisten-
te al variare di f(x) (sufficientemente regolare) e degli estremi a e b. Si è anche intrapreso lo

studio per f(x) =
1

x
, nell’intervallo [−1, 1]. Il metodo implementato in questo caso fallisce la

rappresentazione della soluzione in quanto vengono restituiti valori logici NaN dovuti alla di-
scontinuità nell’origine. Risolvendo lo stesso problema in [1, 2] riusciamo però ad ottenere una
buona approssimazione, poichè in tale intervallo la funzione risulta di classe C∞.
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Parte IV

Appendice
3.1 Calcolo integrale

Calcolo di (6) per i = 1 e j = i, j = i+ 1

c1

∫ b

a
ϕ

′
j(x) · ϕ

′
i(x) + ϕj(x) · ϕi(x)dx+ c2

∫ b

a
ϕ

′
j(x) · ϕ

′
i(x) + ϕj(x) · ϕi(x)dx =

c1(

∫ x1+2h

x1

1

h2
dx+

∫ x1+h

x1

(
x− x1
h

)2dx+

∫ x1+2h

x1+h
(−x− x1 + h

h
+ 2)2dx)+

+ c2(

∫ x1+2h

x1+h
−1

h

1

h
+ (−x− x1 + h

h
+ 2) · (x− x1 + h

h
)dx) =

c1(
2

h
+

2

3
h) + c2(

h

6
− 1

h
)

(12)

3.2 Animazioni convergenza

Vengono mostrati di seguito le animazioni degli esempi trattati in questo elaborato, per mostrare
come al crescere di N la soluzione un si avvicina alla soluzione esatta

Animazione per soluzione un relativa a (8)
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Animazione per soluzione un relativa a (9)

Animazione per soluzione un relativa a (10)
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Animazione per soluzione un relativa a (11)
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