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1 Optimal Portfolio

1.1 Portfolio Choice

In choosing the portfolio, we focused on picking stocks from different sectors and
markets. Specifically, the stocks are centered around American and German mar-
kets because of their constancy. Portfolios will then be made of stocks from the
following companies: Walmart, The Coca-Cola Company, The Walt Disney Com-
pany, Nike, Allianz SE, Deutsche Lufthansa AG, Volkswagen and Adidas.
In the very beginning we thought about considering also Japanese stocks, owing
to their position in the tech industry, however we discarded them in the end be-
cause we faced some problems when dealing with high numbers of stocks. What
happened was that the result we obtained in the first data manipulations seemed
very unrealistic (i.e many risk free stocks) and with few attempts in understanding
what was going on, we presumed the problem came from the number of chosen
stocks in relation with the length of the rolling window we analyzed later in the
code that leads then to a singular covariance matrix.
So, moving further, we eventually selected, in a time interval from 1st January
1999 to 31st December 2018, 9 stocks representing a broad range of sectors such
as food and beverage manufacturing, consumer discretionary, aviation, consumer
services, entertainment and banking financial services.
The stock choices we made are based on the results of financial theory: diversifi-
cation benefits are higher when stocks in a portfolio are uncorrelated or negatively
correlated.
Generally, financial risk in a portfolio can be decomposed into systematic and un-
systematic risk. Systematic risk is also referred to as undiversifiable risk and this
component of risk we cannot mitigate. Systematic risk reflects major economic
changes which affect the market as a whole. This could be changes in interest
rate, recessions, inflation etc.
Contrary to this, unsystematic risk affects individual sectors or securities and can
generally be avoided through proper diversification. This is done by constructing
a portfolio in which stocks are uncorrelated or negatively correlated in order to
hedge against the risk of a fall in a specific sector with the rise in another sector.
It is also worth noting that we restricted our financial data from 19 99 to 2019 in
order to avoid market irregularities caused by COVID-19. In times of crisis we gen-
erally observe increased correlation between stocks in a portfolio and systematic
risk tends to increase as the effects of the crisis materialize in the market.
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1.2 Estimation

We then proceeded computing the estimated yearly returns over a rolling window
of 10 years. By doing that we are trying to understand how stocks will behave
based on the trend of the previous decade. Starting from these results we then
build our portfolio.
Overall it appears that yearly returns tend to be positive for almost all stocks and
for all period. This is quite surprising, mainly for the European stocks as their
returns depend also on the volatility of currencies (for which the exchange rate
reached a minimum of 0.85 and a maximum of 1.57).

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
WalMart 0.0430 0.0095 0.0148 0.0215 0.0508 0.0535 0.0706 0.0502 0.0552 0.0953 0.0724
Coca Cola 0.0111 0.0538 0.0689 0.1017 0.1098 0.0983 0.1268 0.1347 0.1162 0.1020 0.1286
Qualcomm 0.2484 -0.0272 0.0415 0.0950 0.1204 0.0975 0.0624 0.0280 0.0909 0.1074 0.1080
Disney -0.0764 -0.0209 0.0256 0.0605 0.1108 0.1169 0.1283 0.1610 0.1399 0.1449 0.1740
Nike 0.1043 0.1347 0.1442 0.1582 0.1879 0.1831 0.1850 0.2156 0.1758 0.1664 0.1932
Allianz -0.0731 -0.0248 -0.0227 -0.0141 0.1062 0.0870 0.0894 0.0726 0.0543 0.0793 0.1125
Lufthansa -0.0215 0.0046 0.0156 0.0203 0.1055 0.0529 0.0457 0.0284 -0.0395 0.0660 0.0624
VW 0.0088 0.1207 0.1875 0.1787 0.2279 0.2237 0.2139 0.1568 0.1171 0.0742 0.1419
Adidas 0.0996 0.1552 0.1709 0.1766 0.1805 0.1812 0.1033 0.1132 0.1611 0.1417 0.1876

1.3 Efficient Frontier

Since similar portfolios will have similar characteristics (ie return rates and stan-
dard deviation), the best strategy for an investor is to choose amongst all the
possible ones those that either the maximum return given a fixed risk or the one
with lowest risk for a fixed return. Such a set is what we denote as the efficient
frontier.
The efficient frontier is a great tool when trying to gauge diversification benefits.
To determine these benefits we analyse the curvature of the frontier, since it allows
us to have a better understanding of the relation between the expected return rates
and the risk that we would face. Different investors may have different strategies
as their willingness to take risks for a higher return are different.
When including a risk-free asset, we can construct the set of efficient portfolios:
adding such an assets allows us to solve the linear problem that underlies in the
task of finding an optimal portfolio. Re-scaling the result without the amount
invested in the risk-free asset will give us what we call the market portfolio. Such
portfolio is also the intercept of the Tobin separation’s line that is obtained by
by the linear combination of the risk-free asset and the market portfolio. This
set is called the capital market line and is the tangent to the efficient frontier. It
originates from the risk-free rate and intercepts the efficient frontier in the market
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portfolio, when we have our portfolio fully made by the risk-free asset and fully
made by risky assets respectively.
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In the plot we can see how each rolling period has different benefits. In the first one
that goes from 1999 to 2009 the portfolio with the lowest risk has also a negative
return; nevertheless a low increase in the risk implies a higher return rate increase
than the one we can see in the 2004-2014 window, which has the lowest standard
deviation for a positive return. Once again we want to highlight that based on the
risk aversion of the investor, they might find more appealing completely different
frontiers: one might prefer facing a higher risk for a bigger change in the expected
returns, another one might prefer a lower return if this implies facing a lower risk.

In a scenario where borrowing, lending and short sales are allowed, adding an asset
with a risk-free rate of 1% allows investors to have a broader choice amongst the
possible portfolios: their portfolio can be rearranged in order to take away some
risk by investing part of the capital in such asset.
This new scenario can be further studied by adding the Tobin separation’s line
to our plot. Similar conclusion can be drawn as those we had before: a steeper
capital market line can be identified for the 2009-2019 window, while some others
appear to have a negative slope, which can be interpreted as that it would have
been more efficient to invest completely in the risk-free asset than in the market
portfolio. It should be noted that we considered the same rate for borrowing and
lending in the risk free asset.
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1.4 Asset Allocation

Another way to try to identify market’s trends is to fix a constant return and study
how would the portfolio change over the time as a response to such changes. If
the optimal portfolio does not need to change drastically to meet our constrain we
can say that the market has been stable. Otherwise if significant changes in the
market have taken place, investors have to modify their portfolios to align with
the new scenario. One tool that can be used to retrieve such insights is the so
called portfolio turnover, that has been computed with the following

turnover =
min(sold, bought)∑
|portfolio weights|

· 100

where sold and bought clearly indicate the units of stocks sold or bought over a
time period.
It is then clear that in order to achieve a constant return it might be required
to change drastically our portfolio, as it happens between 2012-2013 where the
turnover is 154%, but it as likely that no major action is needed to keep return at
the same level, as in the window from 2011 to 2012 where we have a turnover of
7.5%.

2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Turnover 35.2898 30.0759 7.5230 154.9565 143.0815 41.6187 34.5924 21.0013 22.4840 74.3947

Moreover studying the portfolio turnover enables us to have a first glance of what
the real return might have been after each year. Recall that our portfolio are built
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based on the data of the previous decade, which does in no way imply that it
will keep the same return. As we can see we miss our target return almost every
period. This perfectly embodies one of the biggest issue when choosing a portfolio:
it will always trail behind market trends. Because of this we mainly fail to hit our
targeted return, which does not necessary imply that we are on the losing side:
bad performing portfolios are as likely as over performing portfolios as we can see
by the study of the ex-post returns. Even if we hit negative returns of -0.68, our
portfolio managed to reach a staggering return of 11.33.

2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Ex-Post Return -0.0937 0.5856 0.1258 -0.2624 0.4468 11.3361 -0.6838 -0.2826 0.4798 0.0884

Both of this results are in line with those we got from the turnover analysis. This
is due to the fact that in both cases we want to adjust our portfolio to perform
with a fixed target either being higher or lower than the one we got in the previous
period.

1.5 CAPM comparison

When analysing portfolio’s performance, it is helpful to understand how the empir-
ical results behave compared to the theoretical results. In order to do so, we want
to compare how stocks in the portfolio are performing compared to the correspond-
ing market. In our case we will compare the American stocks in our portfolio with
the S&P500 market index and the European ones with the DAX market index,
since we expect them to be the most suitable to describe trends for our portfo-
lio. We then proceed to compute the β for each stock against the corresponding
market’s index. At this point in has been quite a challenge to understand how to
compare our portfolio against the two market’s indices. We chose to both study
each ”sub-portfolio” against the corresponding index and to study the portfolio as
whole using a weighted market index, based on how many units of American or
European stocks we have in our dynamic portfolio. We acknowledge that these
choices might not be the most suitable, as taking sub-portfolios of optimal port-
folios does not imply that they keep being optimal, as well as having a weighted
market portfolio using our stock weights does necessarily imply that it is optimal.
This said, having to deal with a dynamic portfolio, which lead to have a dynamic
portfolio β, these two options seemed the more reasonable and suitable for our
study.
The results we see are quite insightful: even if there are periods where the CAPM
prediction is (almost) met, it prevails the latter case. This is not unexpected: as
we highlighted previously our predictions are based on past results so we are not
entirely surprised. We also know from empirical results that sometimes it is even
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more advantageous to bet against beta as presented in the work by Pedersen &
Frazzini.
We can also see that the study of Jensen’s alphas support this reasoning. As we
get both negative and positive values it is once more clear that having a portfolio
that has a target constant return might be as likely winning as losing strategy.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
α -0.0902 1.3050 0.8856 -0.2629 0.4427 11.3243 -0.7017 -0.3014 0.4474 -0.1808

As a conclusion of the portfolio analysis we compute the Treynor-Mazuy measure.
For this part we used the returns for each year of our portfolio and compared it
to the weighted portfolio of the two market indices.
For the portfolio to have a negative timing means that it fails to react quickly

Timing ability Corresponding p-value:
-6.7791 0.0031

enough to variations in market’s trends. This also explains why we barely have a
portfolio with constant return. It is important to note that, even if the portfolio
fails to have a good timing it manages to not always being losing when compared
to the market as we have seen. It should be noted that this measure has been
implemented using as a term of comparison the mean return of the weighted com-
bination of the two market indices. As previously stated, we find this to be the
most immediate and natural way of dealing with the situation when our portfo-
lio is composed by stocks from different markets, but we acknowledge that that
probably is not the optimal solution.
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2 Bonds

2.1 Choice and Analysis

In approaching this section we tried to collect data that could fit the kind of
calculation required when working with bonds. We then found a database that
provided us with the required information on the real bonds (BorsaItaliana.it).
The bonds we analyzed are (all prices quoted in euro):

1. Siemens Fin Tf 2,875% Mz28 Eur. A corporate bond from ExtraMOT mar-
ket.

2. Mediobanca Mb20 Tv Cap Floor Lg23 Eur. An Italian bank bond issued by
MOT market.

3. Bund Tf 1,25% Ag48 Eur. A government bond issued by MOT market.

4. Daim Int Fin Tf 0,25% Mg22 Eur

5. Austria Tf 1,5% Nv86 Eur. A government bond issued by the Austrian
Republic.

For a better understanding:

Siemens Mediobanca Bund Daim Austria
Price 118.0000 103.8837 127.8749 100.3010 125.0000
Coupon Rate 0.0288 0.0300 0.0125 0.0250 0.0150

We then calculated the yield curve, duration and convexity for each bond in the
portfolio. We got the following results:

Yield Duration Convexity
Siemens -0.0005 5.6460 36.6
Mediobanca 0.0029 1.4077 2.7
Bund 0.0017 23.1144 594.1
Daim 0.0154 0.3153 0.3
Austria 0.0098 44.2196 2477.2

The yield-to-maturity is the total return on a bond if it is held until the maturity
date. The yield curve does not seem to be very high, this could be due to the per-
ceived stability of the bonds. Generally high yield bonds, also called junk-bonds,
have a much higher default risk, which is offset by more impressive yields than the
ones in our table. The bonds in our portfolio represent relatively stable entities
such as the state of Germany and international companies which have low default
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risk.
Duration measures bond’s sensitivity to changes in the interest rate. The table
shows the modified duration in years, which is a measure of the price changes on a
given bond if the interest rate changes by 1%. When investing in bonds one has to
be aware of two risk factors affecting the value of investment: credit risk (default)
and interest rate risk (fluctuations in the interest rate). Duration is a measure of
the second risk factor and is therefore very useful when trying to determine the
risk-profile of an investment in bonds.
Lastly we calculated convexity which is very insightful when paired with duration.
Convexity is a measure of the acceleration of price change on a bond as the in-
terest rate changes. One thing that caught our attention in this table, is that the
convexity and duration is much greater on the Austrian and German state bonds
(especially the Austrian). This could be due to the difference in maturity date
when these two bonds are compared to the rest of the portfolio. For example the
Austrian bond is set to mature in 2086, the German bond in 2048, while other
maturities are in 2022, 2023 and 2028. Duration and convexity are positively cor-
related with maturity. So the longer the maturity, the greater the convexity/price
sensitivity to yield changes.

2.2 Portfolio

In this part we calculated the duration and convexity of a portfolio of the 5 bonds
before, if we invested a total of €500.000 in the portfolio. We calculated the
modified duration and yearly convexity as the weighted average of the individual
bond duration and convexities comprising the portfolio. We see that the weighted
modified duration and convexity for the portfolio of bonds are given as 14.94 and
622.16.
Interest rates and bond prices are inverse, this means that when interest rises,
bond prices decrease. So when the interest rate changes, the yield curve will shift,
presenting a yield curve risk to investors. The results in this part indicate that
a 1% rise in the interest rate will prompt a decrease in portfolio price of 14.94
with a rate of acceleration of 622.16. Typically a higher coupon rate or yield on
the bonds will generate lower convexity. This is due to the fact that when bonds
are having high yields, interest rates will have to rise more drastically in order to
expose investors to risk.

2.3 Potential Decline

Here we analyzed the price changes, given a change in the interest rate of 150 basis
points. The original portfolio price was €500.000 and the yield curve shifted up by
1.5%. As mentioned before, when the yield curve shifts upwards, prices should fall
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because of the inverse relationship. Our approach in this section was to do some
price approximations based on duration and convexity and then compare these to
the true prices calculated by using the new yield curve after the upward shift.
The first order price approximation based on duration was 387.950 - or a decline
in portfolio price by 22.41%. The second order price approximation based on con-
vexity was 422.940 - or a decline in portfolio price by 15.41%.
We then calculated the true new price which was 394.110, which indicates that the
approximation based on duration was the most accurate of the two. The impor-
tance of convexity in the approximations increases as the magnitude of the yield
curve shift increases. This makes sense, as convexity expresses the acceleration
rate of price changes given shifts in the yield curve.
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