(a0 9

UNIVERSITA
DI PARMA

DIPARTIMENTO DI SCIENZE MATEMATICHE, FISICHE E INFORMATICHE
Corso di Laurea Triennale in Matematica

Tesi di Laurea in
Analisi Numerica

RISOLUZIONE NUMERICA DI
EQUAZIONI INTEGRALI DI

FREDHOLM DI SECONDA SPECIE
CON IL METODO DI KULKARNI

Relatore
Chiar.ma Prof.ssa Alessandra AIMI

Candidato
Alexei CONDURACHI

Settembre 2020

Indice

I

Introduzione

II Risoluzione numerica

1

9

Obiettivi

Presentazione del problema

Risoluzione numerica con metodo di Galérkin
Risoluzione numerica con metodo di Kulkarni
Stime degli errori

Ordini di convergenza

Esempi numerici con proiezione ortogonale

7.1 Esempiol
7.2 Esempio 2 e e
7.3 Esempio 3
7.4 Esempio4d

Esempi numerici con proiezione interpolatoria

8.1 Esempiol
8.2 Esempio 2
8.3 Esempiod

Conclusioni

10 Appendice

Bibliografia

11
11
12
13
14

15
15
16
17

18

19

25

Parte 1
Introduzione

Nell’ambito scientifico capita frequentemente di imbattersi in equazioni differenziali dalla
piu svariata struttura, ma sono altrettanto frequenti e di elevato interesse le equazioni
integrali, ovvero quelle in cui 'incognita compare anche sotto il segno di integrale. Esse
hanno le varie applicazioni in ambito fisico, e non solo, a tal punto che si rende necessario
poter trovare la soluzione (o le molteplici) a queste. Spesso pero la risoluzione di que-
sti problemi matematici risulta ostica e complessa. Grazie agli sviluppi tecnologici degli
ultimi decenni alla Matematica é stato fornito un nuovo strumento per poter affrontare
suddetti problemi: il calcolatore. Questo adoperato in maniera oculata, permette di risol-
vere problemi di elevata complessita in tempi drasticamente inferiori.

Proprio della risoluzione di questi ultimi si occupa I’Analisi Numerica. Non bisogna pen-
sare che quest’ultima nasca con 'avvento dei calcolatori moderni: varie figure chiave della
Matematica, quali Newton, Lagrange, Jacobi, Gauss ed Eulero, si erano interessate al-
lo studio e alla creazione di algoritmi secoli prima che il calcolatore elettronico venisse
inventato.

Parte 11
Risoluzione numerica

1 Obiettivi

Per poter affrontare un problema reale da un punto di vista matematico ¢ necessario crea-
re quello che viene detto un modello che traduce in linguaggio matematico un fenomeno
reale. Da questo si passa ad un problema numerico che viene risolto attraverso algoritma.
In questi passaggi vengono effettuate varie semplificazioni e approssimazioni che possono
avere ripercussioni sulla soluzione ottenuta. Cosi come accade in laboratorio dove ¢ ne-
cessario tenere conto degli errori e della tolleranza degli strumenti, allo stesso modo in
Analisi Numerica bisogna tenere conto degli errori di rappresentazione, ovvero i valori che
si possono considerare in aritmetica di macchina dovuti alla natura finita del calcolatore,
degli errori analitici, dovuti al passaggio da continuo a discreto, e degli errori causati dalle
semplificazioni effettuate.

Lo studio degli errori analitici ¢ cruciale nella fase di modellizzazione in quanto ci forni-
sce in prima battuta una iniziale stima dell’errore che intercorre fra la soluzione esatta e
quella approssimata.

Risulta ovvio che in molti casi si possono fare migliorie sulla soluzione per ridurre ’errore
commesso. Per esempio, possiamo approssimare un cerchio con un poligono pitt semplice
di n lati: se aumentiamo il numero n otteniamo una approssimazione piul accurata che
pero richiede un numero maggiore di passaggi. Allo stesso modo possiamo migliorare la
nostra soluzione, ma questo spesso si traduce in un tempo computazionale maggiore. Di-
venta fondamentale dunque analizzare gli algoritmi e trovarne di piu efficienti.

Di seguito confronteremo il metodo di Galérkin e il metodo di Kulkarni per risolvere equa-

zioni di Fredholm di seconda specie, osservando quale converge piti rapidamente.
Il metodo di Galérkin, fondamentale in vari ambiti dell’Analisi Numerica, verra adoperato
come elemento di riferimento e paragone per il pitt recente metodo di Kulkarni.

2 Presentazione del problema

Introduciamo la nozione di equazione integrale di Fredholm di seconda specie.

Definizione 2.1. Sia T" un operatore lineare compatto definito sullo spazio X complesso
e di Banach!. Siano f e u elementi di X. Viene detta equazione integrale di Fredholm

di seconda specie la seguente
u—Tu=f (1)

Assumiamo che (I — T') sia invertibile, in modo che (1) abbia un’unica soluzione.
Facciamo un maggior raffinamento su X e supponiamo sia uno spazio di Hilbert?.

Definizione 2.2. Un operatore lineare P su X, tale che P? = P si dice proiezione.

Consideriamo la successione di proiezioni 7w, : X — X, convergente puntualmente
all’operatore identita I.
Esse operano nel seguente modo: ad x € X associano un elemento z,, € X,,.

Per le proprieta dell’operatore di proiezione si dimostra che ogni elemento di X si puo
scrivere come somma di un elemento di X, e di uno del suo complementare X¢.

Sia ¢; ¢ =0,...,n una base del sottospazio vettoriale X,, di dimensione finita. Con-
sideriamo la matrice dei pesi (p;, p;), indichiamo con A := (ay;) la sua inversa. In questa
tesi considereremo proiezioni del seguente tipo

Ta(f) = Z%’j < f,pi > pj
ij=1

Proposizione 2.1. L’operatore 7, appena definito, ¢ una proiezione. Ovvero verifica

=,

Luno spazio X si dice Banach se e solo se & uno spazio normato completo rispetto alla metrica indotta

dalla norma.
20gni spazio di Hilbert ¢ anche di Banach

Dimostrazione. Sia u € X e <, > il prodotto interno classico su X, allora

n n

T (Tpu) = Z (Z aij<ua 90i>90j><70l>90k

1,k=0 4,j=0

= Z (alk Z <U, Soi><90j’ @l)@k)

1,k=0 i,j=0

= (Z i, pi)er Y k(e 90z>>

i,j=0 1=0

I
2
=
S
AS
AS
ol

I

3
3
<

3 Risoluzione numerica con metodo di Galérkin

Il metodo di Galérkin fornisce una soluzione discreta al problema continuo. Questo pas-
saggio si rivelera cruciale, poiché ci permette di poter implementare un algoritmo che
dara come risultato la soluzione approssimata sostituendo all’operatore T' un operatore
di rango finito T,,.

Il metodo di Galérkin prevede quindi che I'operatore T' venga sostituito da

G
T, =m1m,

e che f sia sostituita da m, f.
Otteniamo cosi la nuova equazione

ul — m,Trus =7, f (2)
Risulta immediatamente che vale il seguente

lim uw, = u
n—o0

Procediamo ora alla ricerca del sistema lineare da risolvere per trovare le soluzioni ap-
prossimate.
Per il metodo di Galérkin u,, viene scritto nel seguente modo

n
P
i=1
sostituendo in (2), otteniamo

=1

i=1

La (3) diventa dunque

ZXJ'SOJ = (Z ain <Tmnf, i > ¢n) + (Z Qip < T(Z Xje5), i > on)
J=1 j=1

i,h=1 i,h=1

Sviluppando per 'elemento j — esimo di X, otteniamo

:Zaz]<TZats<f90t>90s pi > ZXZQZJ<T(‘OP Pi)

t,s=1

= Zaz] Zats<f790t)<TSDS Pi ZX ZC(ZJ<T(‘OP Pi)

t,s=1

Definiamo il vettore g e la matrice B come segue

Zoéhk Z < f,0i ><T(p;), on >

i,7=1

B = (by) = Zam’ <T(pj),on>

h=1

Con queste notazioni la (3) si riduce al seguente sistema lineare

(I-B)X=g

4 Risoluzione numerica con metodo di Kulkarni
Il metodo di Kulkarni prevede che T venga sostituito da
T, =mTm, +m,T(I—7,)+ (I —my)Tm,

Dunque si ha
T —T. =|({ —m)T(I —7,)|| =0 per n— oo

Si ottiene quindi la seguente approssimazione dell’equazione (1)
Uy, — (mp Ty + 1, T (I —) + (L — mp)Tmn)uyn = f
Applicando 7, ad entrambi i membri
Tty — (T T + 1, T(L —) + 7 (I — 7)) T)y, = o f
Osservazione 4.1. Per le proprieta di m, si ha 7, (I —m,) =0
Dunque la precedente equazione si riduce a

Tty — T Tty — 7, T(1 — mp)u, = 7 f
Per ricavare il valore di (I — m,)u,, applichiamo (I — 7,,) alla (4)

(I —mp)up — (I — mp)Trpuy, = (I — 7)) f
ovvero otteniamo che

(I —mp)up, = (I — 7)) Trpu, + (I — 7)) f

5

Sostituendo nella (6) otteniamo
Ty — Tp Tty — m, T(I — 7)) Ty, — w1, T(L —) f = mn f
Ponendo w,, = m,u,, abbiamo la seguente equazione
wp — (m, T + 1, T (I —)T wp, = mp f + m, T (I — m,) f (7)

Poiché u,, &€ combinazione della sua proiezione su X,, e sul suo complementare, si scrivera
nel seguente

Uy = Ty + (I —) up = wy + (I — mp)Tw, + (I —) f (8)

Esplicitiamo quindi i termini di (7) considerando che w,, = Z Xipi
i=1

o mTw, =m, Y X/T(gr) = ay <Z <T(p0) i > %)
t=1

t=1 i,h=1

o 1,T%w, =, T (Z T(%)) = Z Qi (Z < TQ(SDt)aSO > %’)

ij=1

° 7TnT7TnTwn = Z Qs (Z Q] (Z Xt < T((pt), Pk >> < T((pl), ©w; > 90]>

ij=1 k.l t=1

o T, f = Z(Oéz‘j < f, i > ;)

ij=1

o mTf =) (ay<T(f)pi>)

i,j=1

o m,Im,f = Z Qi (Z (am < fr01>) <T(@1), i > 903‘)

i,j=1 k=1

Introduciamo dunque le matrici A, B, M e i vettori b, g definiti come segue

o A=< T(@J)ﬂpz >

B =< TZ((,OJ'), ©w; >

M =< ;,p; >

b =< f7§0i>

g =< T(f)v pi >

Possiamo riscrivere la (7) in forma matriciale
I-M'A-M'B+ (M 'A))X=M"'(b+A—-AM 'b) (9)
o equivalentemente moltiplicando per M
M-A-B+MM'A))X = (b+A—AM 'b)

Una volta risolto il sistema ¢ sufficiente sostituire il valore di w, in (8) per trovare la
soluzione discretizzata u,,.

5 Stime degli errori
Consideriamo la seguente definizione per I'operatore integrale
1
(T2)(s) = / k(s ()t s€0,1] (10)
0

con k(-,-) € C ([0,1] x [0,1]). Allora T : L*[0,1] — L?[0, 1] & un operatore lineare compat-
to.

Sia r > 1. Se k(-,-) € C" ([0,1] x [0,1]), allora R(T) C C"[0, 1], dove R(T) indica il ran-
ge dell’operatore T'. Quindi, se k(-,-) € C" ([0,1] x [0,1]) e f € C"[0,1], allorau € C"[0, 1].

Per u € C"[0,1], si indichi con u(" la r-esima derivata di u. Definiamo

D"k o k 0,1
g t t t
(5,6) = 5 oh(st) ste 0]
Ikl = 30 SDID kL
i=0 j=0
¢ T
e = Sl
1=0
G

La stima dell’errore per u,’ e u, sono ottenute dal seguente
Teorema 5.1. Per n sufficientemente grandi

lu = w7 | < CLI(T = 70)ull (11)

[= unll < Co| (I = 7)) T(I — 700)u| (12)

Dimostrazione. Siccome ||T — T — 0 per n — oo, per n grandi, (I — T¥) ¢ invertibile,
|T — TE|| < C) e, poiché (I —T) ¢ invertibile, | T + 7, T|| < Cy con C, Cy indipendenti
da n. Dunque

(I - T) — (= WnTWn)_l]f =
(I-T)"'—(I—-mTm,) I —T)u=
I—(I—m,Trm,) (I —T)u=

(I — 7,) (I — 7, Tmp) — (I — 7, T,) (I = T)]u =
= (I —7,Tr,) I —m, Ty, — I +T)u =

= (I —7m,Tr,) [T — 7, T,]u

[
[
=

7

Studiamo ora T — mw,T'm,

T—-—mTr, =T —7m,T+mT—7m,Trn,=I—m)T +7m,T(I—m,) =
=T -Trm,+Tr, —m,Tm, =T —7,) + (I —)T,

Dunque, poiché i termini sono equivalenti

({—m)T +m,T(I—m,)=TU—7,)+ (I —m,)Tm,
= —m)T(I —7m,) =T —7mn)(I — piy)
= I —-m)T =T —m,)

Sostituendo il risultato ottenuto nella precedente, abbiamo che

T—m,Tr, =TI —7,) +m,T(I—m,) =
=(T+m,T)I—m,)

In conclusione abbiamo che
u—ul = —m,Tm) (T +m,T)I — m,)u
Dunque

lu = uZ || < (T = mTma) T + ma TN =)l <
< O =7)ull

che conclude la dimostrazione per (11), posto C := C - Cs.

Dimostriamo ora la (12).

Poiché || T —T,,|| — 0 per n — oo, per n grandi, (I —T,,) & invertibile e ||(I —T,) || < Cy,
costante indipendente da n.

Abbiamo
u—u,=[I-T)" = (I -T)7""|f =
== = (I =T) (I - T)u =
=I—-(I-T)'I-T)u=
=[(I - Tn)_l(I —T,) — (I - Tn)_l([—T)lu =
=(I-T) "I ~T,—IT+Tu=
= =T, T -T,)u
Quindi,

lu = wall < 12 = T) I = 7)) T = 7)ul|
< Gol[(1 = mn)T(1 — 7)u|

6 Ordini di convergenza

Analizziamo ora gli ordini di convergenza dei due metodi.

Sia X = L?[0,1] e indichiamo con < , > il prodotto interno classico su X. Sia 7" un
operatore integrale, come definito in (10), con nucleo k(-,-) € C"(]0, 1] x [0,1]). Per ogni
intero n, sia

O=to<ti < ---<t,=1

una partizione di [0,1] e per i = 1,...,n. Definiamo h; := t; — t;_1, h := max h;. Si
i=0,..., n

assume inoltre che h — 0 per n — oo.

Sia X, = Sy,,, dove SY,, indica lo spazio dei polinomi a tratti di ordine 7 (ovvero di grado
< r —1) sui punti di interruzione t;,...,t, 1 e con v derivate continue (—1 < v <r—2).
Sia m, : X — X, la proiezione ortogonale.

Per v = —1 o v = 0, & noto, senza alcuna restrizione sulla partizione di [0, 1], che (vedere

Richter ([11]) e de Boor ([4]), rispettivamente)
[l Lo 100 < c (13)

Poiché m,x — x per n — oo per ogni x € X, i risultati ottenuti nella Sezione 5 sono
ancora validi.
Per I’analisi degli ordini € cruciale la seguente stima.

Proposizione 6.1. Per x € C"|0, 1], (vedere Chatelin ([3]))
(I = m)z]lse < Cul|l2 ™ [loch” (14)
con (' costante indipendente da n e h.

Proposizione 6.2. Per x € C"[0, 1] abbiamo
IT(= ma)llroo < (C1(r + Dllkllnooll™lloch™

Dimostrazione. Per j fissato tale che 0 < 7 < r, si abbiamo che la derivata j-esima
rispetto ad s di T'(I — m,)x &
| L i
(T(I —7m,)x) P (s) = | =—=k(s,t)(I —m,)x(t)dt
o 0s
Definiamo ,
i
I(s,t) := ﬁk(s,t), s,t €10,1]
Per s € [0, 1] fissato, indichiamo con I[4(t) := I(s,t), t € [0, 1] per mettere in evidenza la
dipendenza da t. Allora

[T(1 = m)z]Y(s)

/0 1 L(E)(I — m,)a(t)dt

<(] - Tn)ZE, ls<t>>
(I = mn)a, (I = mn)ls(1))

poiché 7, & la proiezione ortogonale e poiché siamo in R. Dunque per ogni s € [0,1]
otteniamo

[T(1 = m)2]9 ()] < (I = ma)zllooll (1 =)l lice
< Ol loch - Col|E7 ooh
< Cll2™ [loo[Ellrooh®

Passando all’estremo superiore su s € [0, 1] abbiamo
T = m)2]D oo < (CL?[[Ell ool [loch® (15)

e dunque

IT(1 = mn)]|r.00 = ZII I = ma)a] oo < (CO(r + D[Ellroolla™[loch™

Stimiamo ora l'errore per (12)

Proposizione 6.3. Per x € C"|0, 1], si ottiene

I = m)T(I =)]0 < Coh™ (16)
Dimostrazione. Grazie alla stima (14) abbiamo

(7 =) T(I = ma)alloe < CLlllT = ma)2]™ [loch”
Per la (15), si ottiene
(7 = m)T(I = ma)zlloe < Cr - (CL?[kllroclla™ och® - 7
< (CO* kool oc ™

che conclude la dimostrazione, ponendo Cy := (C1)?||k||r.00l|7™ s O

Risultati analoghi si ottengono nel caso 7, sia una proiezione interpolatoria (vedere
Kulkarni ([16])).
Enunciamo dunque il seguente teorema.

Teorema 6.1. Sia 7, proiezione ortogonale o proiezione interpolatoria su X,. Nel caso
della proiezione ortogonale si considerino k(-,-) € C"(]0,1] x [0,1]) e f € C"[0, 1], mentre
per la proiezione interpolatoria si considerino k(-,-) € C?"([0,1] x [0,1]) e f € C*"[0, 1].
Allora

lu = uy |l = O(A*) (17)

Dimostrazione. Studiamo il caso della proiezione ortogonale, da (12) e da (16) segue la
(17)

[= unllz < Col|(1 = m)T(I — 0)ul|2
< Cof|(I = mo)T (I =)|
S (02)2h3r

ovvero la tesi. O

10

7 Esempi numerici con proiezione ortogonale

Vediamo alcuni esempi di equazioni di Fredholm di seconda specie e confrontiamo la
soluzione esatta, la soluzione approssimata con metodo di Galérkin u& e quella con il
metodo di Kulkarni w,,.

Nei seguenti esempi ci siamo posti nello spazio L? sull’intervallo [a, b]. Consideriamo come
sottospazio, I'insieme dato dalle splines costanti a tratti, ovvero dei polinomi di grado
r=0ev=-—1.

Ci aspettiamo quindi ordine di convergenza 1 per il metodo di Galérkin e 3 per quello di
Kulkarni.

Ricordiamo I’equazione di Fredholm

u(s) —Tu(s) = f(s), T = / k(s,t)u(t)dt, s,t € [a,b]

7.1 Esempio 1

Consideriamo il seguente caso

! 1 —st -5 1 —s—1
u(s)—/o §(s+1)e ~u(t)dt =e —|—§(e —1)

che ha la seguente soluzione
u(s) =e?

Le soluzioni approssimate con i due metodi sono le seguenti

1.1 T T

—Soluzione Galerkin
= —Soluzione Kulkarni
) Soluzione esatta

08— ~

0.6—

04—

0s \ \ \ \ \ \ \ \ \

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
S

Vediamo in modo evidente come il metodo di Kulkarni risulti un grande miglioramento
rispetto quello di Galérkin, che comunque fornisce una buona approssimazione anche per
n non elevati.

Confrontiamo, al raddoppiare del numero di sottointervalli n, ’andamento degli error:
e degli ordini dei due metodi nella seguente tabella (N.B. per mettere in evidenza p, il
rapporto tra due errori successivi € stato normalizzato dividendo per log 2)

11

N h Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni

2 5.0000e—01 2.2006e—01 2.5147e—03 — —

4 2.5000e—01 1.1666e—01 3.2438e—04 9.1557e—-01 2.9546e+00
8 1.2500e—01 6.0305e—02 4.0781le—05 9.5199e—01 2.9917e+00
16 6.2500e—02 3.0687e—02 5.0974e—06 9.7464e—01 3.0000e+00
32 3.1250e—02 1.5483e—02 6.3666e—07 9.8699e—01 3.0012e+00

La tabella mostra come i risultati numerici siano in perfetto accordo con le stime teoriche
presentate nelle sezioni precedenti. Inoltre mette in evidenza la maggior precisione del
metodo di Kulkarni.

7.2 Esempio 2

Studiamo il comportamento dei due metodi sull’intervallo [0, 7] e mostriamo che i risultati
ottenuti nelle sezioni precedenti si estendono in modo naturale su intervalli del tipo |a, b]
L’equazione di Fredholm in questo caso ¢ la seguente

u(s) — /07r sin(s — t)u(t)dt = cos(s)

che ha soluzione

u(s) = 5 (2cos(s) + wsin(s))

4+

Le soluzioni sono mostrate di seguito

01—

—Soluzione Galerkin
—Soluzione Kulkarni
Soluzione esatta

02

s \ \ \ ! \

0 05 1 15 2 25
El

Vediamo dunque che anche spostandosi dall’intervallo [0, 1] i due metodi risultano efficaci.
Anche gli errori e gli ordini continuano ad essere in linea con le stime calcolate in
precedenza, come si nota dalla seguente tabella

12

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni

2 3.8665e—01 1.0874e—01 — —

4 2.2307e—01 1.7007e—02 7.9353e—01 2.6766e+00
8 1.0763e—01 2.1455e—03 1.0514e+00 2.9868e+00
16 5.3491e—02 2.6896e—04 1.0087e+00 2.9958e+00
32 2.6557e—02 3.3475e—05 1.0102e+00 3.0062e+00

7.3 Esempio 3

Studiamo nuovamente 1’equazione dell’esempio precedente, ponendoci perod nell’intervallo
[—1,0] in cui k e f non godono di particolari simmetrie

u(s) — / sin(s — t)u(t)dt = cos(s)

-1
che ha soluzione
2

u(s) = —m(—%m(s) — 5cos(s) + +cos(s + 2))

Ancora una volta entrambi i metodi forniscono soluzioni consistenti ed efficaci per il pro-
blema in analisi

08—

u(s)

06— — —Soluzione Galerkin
_ —Soluzione Kulkarni
_ Soluzione esatta
04— _
—
~
/ -
/ -
027/ g

o | | | | | | | | |

-1 -0.9 0.8 0.7 0.6 05 0.4 03 0.2 0.1
S

Allo stesso modo non si evincono anomalie nemmeno per gli errori e gli ordini di conver-
genza

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
2 3.6149e—01 1.6365e—03 — —

4 1.7975e—01 2.7387e—04 1.0080e+00 2.5790e+00

8 8.9581e—02 4.1105e—05 1.0047e+00 2.7361e+00

16 4.4711e—02 5.5470e—06 1.0025e+00 2.8895e+00

32 2.2335e—02 7.1827e—07 1.0013e+00 2.9491e+00

7.4 Esempio 4

Analizziamo ora il caso in cui la regolaritd del nucelo k£ e di f non sono quelle attese,
ovvero non sono di classe C''[a.b]. Un esempio di questa situazione ¢ la seguente equazione

u(s) — / 2 0u(t)dt = /s
0
con soluzione 34
_ 0% 5
u(s) = /s + T05°

Notiamo che le soluzioni ottenute con i due metodi implementati approssimano in modo
efficace la soluzione.

08— —

04—

02— —Soluzione Galerkin
—Soluzione Kulkarni
Soluzione esatta

o/ | | | | | | | | |
0 0.1 02 03 04 05 06 07 08 09

Inoltre notiamo che i due metodi continuano ad essere convergenti nonostante f non sia
di classe C! in a = 0.

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
2 4.7928e—01 5.4903e—03 0.0000e+00 0.0000e+00
4 3.3484e—01 1.0430e—03 5.1739e—01 2.3961e+00
8 2.3598e—01 1.5539%e—04 5.0486e—01 2.7468e+00

16 1.6672e—01 2.1034e—05 5.0125e—01 2.8851e+00

32 1.1786e—01 2.7306e—06 5.0032e—01 2.9455e+00

La discontinuita in uno dei due estremi non inficia dunque la convergenza, ma riduce
'ordine per entrambi i metodi (vedere Kulkarni ([16]), Osservazione 4.7, p 525).

14

8 Esempi numerici con proiezione interpolatoria

Studiamo il comportamento dei due algoritmi per operatori di proiezione interpolatoria
invece che di proiezione ortogonale. Ci poniamo dunque nello spazio X, = ng delle spli-
nes lineari.

Il passaggio a questo spazio implica un aumento dal punto di vista del costo computazio-
nale, ma viene ripagato con ordini di convergenza doppi rispetto al caso con operatori di
proiezione ortogonale.

8.1 Esempio 1

Cerchiamo le soluzioni approssimate della seguente

che ha la seguente soluzione

Otteniamo dunque le seguenti soluzioni approssimate

1 ‘ ‘
—Soluzione Galerkin)
——Soluzione Kulkarni ///

08— Soluzione esatta T

y d
/’ /
/
e -y |
S
: /
/
s
u(so) e
4= // —
s
e d
s
e /// i
ayd
e
S
s
7
o— // N

= | | | | | | | | |

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

-0.2

La tabella degli errori pare dare risultati non coerenti con quelli del grafico, infatti

N Errore Galerkin Errore Kulkarni
2 1.1250e—01 2.1213e—12
4 2.9464e—02 2.4469e—12

Notiamo immediatamente che 'errore per il metodo di Kulkarni ¢ dell’ordine di 1072 gia
per n = 2 e non migliora all’aumentare del numero di nodi. Questo fenomeno ¢ dovuto
alle limitazioni del calcolatore. Poiché la soluzione u,, ¢ data da un contributo dovuto a f
e da una combinazione degli elementi della base questo fa si che gia per n = 2 la soluzione

15

di Kulkarni vada a coincidere con quella esatta. L’errore non cala perché i contributi sono
dell’ordine di 10716, inferiori al valore dell’eps di macchina, ovvero il pill piccolo numero
rappresentabile in aritmetica di macchina.

Lo stesso ragionamento non ¢ valido per il metodo di Galérkin in quanto non é presente
il contributo f, ma m,f che genera un errore dovuto alla proiezione.

8.2 Esempio 2

Consideriamo 1’Esempio 1 della sezione precedente e confrontiamo i risultati

! 1 —st _ =S 1 —s—1
u(s)—/o §(s+1)e ~u(t)dt = e +§(e -1)

con soluzione
u(s) =e

Le soluzioni approssimate su una base di splines lineari sono le seguenti

—Soluzione Galerkin
—Soluzione Kulkarni
Soluzione esatta

04—

0s \ \ \ \ \ \ \ \ \

e la relativa tabella

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
2 1.8432e—02 2.0108e—06 — —

4 4.9009e—03 3.0513e—08 1.9111e+00 6.0422e+00

8 1.2639%e—03 4.7732e—10 1.9551e+00 5.9983e+00

16 3.2079e—04 2.0094e—11 1.9782e+00 4.5701e+00

E’ evidente che le soluzioni in questo caso sono ben piu precise di quelle ottenute nella
sezione precedente.

Notiamo che vengono nuovamente rispettate le stime attese per gli errori e per gli ordini
di convergenza.

16

8.3 Esempio 3

Prendiamo in analisi come ultimo esempio la seguente equazione, definita sull’intervallo

[—7, 7] '
u(s) — / sin(s — t)u(t)dt = cos(s)

la cui soluzione esatta € ,
wsin(s) + cos(s)

14 72

Otteniamo dunque le seguenti approssimazioni della soluzione

01—

03—

—Soluzione Galerkin
—Soluzione Kulkarni
Soluzione esatta

0.4

La tabella degli errori é la seguente

2 3

N h Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
2 3.1416e+00 5.1155e—01 9.4879e—02 — —
4 1.5708e+00 5.8484e—02 2.8243e—03 3.1288e+00 5.0701e+00
8 7.8540e—01 1.5496e—02 3.0450e—05 1.9162e+00 6.5353e+00

16 3.9270e—01 3.9129e—03 4.3334e—07 1.9856e+00 6.1348e+00

Notiamo che gli errori questa sono dell’ordine di 107!, ma cio ¢ dovuta all’ampiezza
dell’intervallo e quindi di conseguenza da h che risulta essere dell’ordine dell’unita anche

per n = 4.

17

9 Conclusioni

Abbiamo potuto osservare dunque come il metodo di Kulkarni fornisca un miglioramento
importante per la risoluzione di equazioni integrali di Fredholm di seconda specie. Entram-
bi i metodi richiedono la risoluzione di un sistema lineare di pari dimensione. Nonostante
cio, il metodo di Kulkarni risulta avere un costo computazionale maggiore dovuto al cal-
colo di < T%(p;), s > e di <T(f), ;i >.

Questo pero viene ripagato con una precisione maggiore e con un ordine di convergenza
triplo rispetto al metodo di Galérkin.

E’ stato inoltre mostrato che gli algoritmi sono efficaci su intervalli del tipo [a.b] senza
alcuna particolare limitazione.

E’ opportuno sottolineare che le stime teoriche effettuate nelle sezioni precedenti erano
validi per n sufficientemente grandi. Questo ragionamento viene a perdersi in aritmetica
di macchina, emerso anche dagli esempi. Dunque aumentare in maniera non oculata n
non garantisce la convergenza delle soluzioni fornite dai due algoritmi.

18

10 Appendice

Si forniscono in questa sezione i codici Matlab utilizzati nella presente tesi

Programma per risoluzione con metodo di Galérkin per splines costanti

function [u] = Galerkin_T_costanti(x_i,x_f,N,k,f)

%Metodo di Galerkin per risoluzione di equazioni integrale di seconda specie
%Metodo di Galerkin per risoluzione di equazioni integrale di seconda
%specie (di Fredholm){u-T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
%nucleo dell'operatore integrale T
%Si sfruttano risultati analitici e il che la proiezione sia
%sortogonale, che ci permette di dire che la matrice dei pesi e'
%diagonale di costante h, con inversa a sua volta diagonale di
%scostante 1/h

%SINPUT: —x_1i,x_f estremi

% k nucleo di T

% —f

% N numero di elementi della base
%0UTPUT: —u soluzione approssimata

%Inizializziamo il vettore x per la creazione della base di splines
%scostanti
x=linspace(x_1i,x_f,N+1);
%Definiamo il passo della mesh
h=(x_f—x_1)/N;
%Inizializzazione del vettore g, che rappresenta la proiezione di T(P_n(f))
g=zeros(1,N);
for i=1:N
for j=1:N
g(i)=g(i)+1/h"2xintegral (f,x(j),x(j+1))*integral2(k,x(i),x(i+1),x(j),x(j+1));
end
end
%Matrice B le cui colonne sono la proiezione di T(v_j)
B=zeros(N,N);
for i=1:N
for j=1:N
B(i,j)=1/hxintegral2(k,x(i),x(i+1),x(j),x(j+1));
end
end
%Risoluzione del sistema lineare associato al metodo di Galerkin
X=(eye(size(B))-B)\g';
%Inizializzazione della soluzione
u=zeros(1,N+1);
for i=1:N
%La soluzione u e' data dalla proiezione di f a cui si somma il vettore
%la i—esima spline per il coefficiente opportuno dato da X
u(i)=1/h*xintegral(f,x(i),x(i+1))+X(1i);
end
%Definizione dell'ultimo nodo per rispettare le dimensioni di partenza
u(N+1)=u(N);
%Conclusione del programma
end

19

Programma per risoluzione con metodo di Kulkarni per splines costanti

function [u] = Kulkarni_T_costanti(x_i,x_f,N,k,f)

%Metodo di Kulkarni per risoluzione di equazioni integrale di seconda specie
%Metodo di Galerkin per risoluzione di equazioni integrale di seconda
%specie (di Fredholm){u-T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
%snucleo dell'operatore integrale T

%SINPUT: —x_1i,x_f estremi

% —k nucleo di T

% —f

% —N numero di elementi della base
%0UTPUT: u soluzione approssimata

%Inizializziamo il vettore x per la creazione della base di splines lineari
x=linspace(x_1i,x_f,N+1);
%Definiamo il passo della mesh
h=(x_f—x_1)/N;
%Definiamo la matrice M dei pesi e la sua inversa M*—1
M=eye (N,N)*h;
M_l=eye(N,N)x*1/h;
%Inizializzazione delle matrici A e C che rappresentano rispettivamente
%<T(v_j),v_i> e <T"2(v_j),v_i>
A=zeros(N,N);
C=zeros(N,N);
%Inizializzazione dei vettori b e g, che rispettivamente rappresentano
%<f,v_i> e <T(f),v_i>
b=zeros(1,N);
g=zeros(1,N);
%Calcolo di A,B, beg
for 1=1:N
for j=1:N
A(l,j)=integral2(@(s,t) k(s,t),x(1),x(1+1),x(j),x(j+1));
C(l,j)=integral3(@(s,t,v) k(s,t).xk(t,v),x(1),x(1+1),x_1i,x_F,x(j),x(j+1));
end
b(l)=integral(@(s) f(s),x(l),x(1+1));
g(l)=integral2(@(s,t) k(s,t).*f(t),x(1),x(1+1),x 1i,x f);
end
%Risoluzione del sistema lineare relativo per trovare w_n
X=(M+eye(size(A))—A-C+M*(M_1xA)"2)\ (b'+g'—A*M_1xb");
%Inizializzazione vettori di supporto per il calcolo di u a partire da
%omega_n. Y indica il termine P_n(T(w_n)), b_1 il termine P_n(f)
Y=M_1xAxX;
b_1=M_1xb";
%Inizializzazione di u
u=zeros(1,N+1);
for 1=1:N
%Introduciamo una variabile di appoggio per calcolare T(w_n)
sum=0;
for j=1:N
%E' necessario calcolare il valore di T(w_n) per in ogni nodo della
%mesh
sum=sum+X(j).*integral(@(t) k(x(1l),t), x(j),x(j+1));
end
%Soluzione approssimata, scritta come somma della sua proiezione su X_n
%e del suo ortogonale
u(1)=F(x(1))+X(1)+sum-Y(L1)—b_1(1);
end
%E' necessario un ulteriore ciclo per il calcolo del valore di u
%nell'ultimo nodo
sum=0;
for j=1:N
sum=sum+X(j).*xintegral(@(t) k(x(N+1),t), x(j),x(j+1));
end
%Definizione dell'ultimo nodo per rispettare le dimensioni di partenza
U(N+1)=Ff (X (N+1))+X(N)+sum—b_1(N)—Y(N);
%Conclusione del programma
end

20

Programma per risoluzione con metodo di Galérkin per splines lineari

function [u] = Galerkin_T_lineari(x_i,x_f,N,k,f)

%Metodo di Galerkin per risoluzione di equazioni integrale di seconda specie
%Metodo di Galerkin per risoluzione di equazioni integrale di seconda
%specie (di Fredholm){u-T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
%snucleo dell'operatore integrale T

%INPUT: —x_1i,x_f estremi

% —k nucleo di T

% —f

% —N numero di elementi della base
%0UTPUT: u soluzione approssimata

%Inizializziamo il vettore x per la creazione della base di splines lineari
x=linspace(x_1i,x_f,N+1);
%Inizializzazione delle splines lineari, definite come function handles
Base=Splines_Lineari(x);
%Definizione di un vettore di nodi ausiliario z, estensione di x, per
%spermettere un calcolo piu' agevole
z=[x(1) x X(N+1)]1;
%Inizializzazione matrice dei pesi
Alfa_l=zeros(N+1,N+1);
for i=1:N+1
for j=1:N+1
Alfa_1(i,j)=integral(@(s)Base{i}(s).*Base{j}(s),max(z(i),z(j)),min(z(i+2),z(j+2)));
end
end
%Inizializzazione dell'inversa della matrice dei pesi
Alfa=inv(Alfa_1);
%Inizializzazione del vettore g, che rappresenta la proiezione di T(P_n(f))
g=zeros(1,N+1);

for 1=1:N+1
for h=1:N+1
for i=1:N+1
for j=1:N+1
g(l)=g(l)+Alfa(h,l)*Alfa(i,j)*integral(@(s)f(s).*Base{i}(s),z(i),z(i+2))*integral2(@(v,r) k(v,r)
.*Base{j}(r).*Base{h}(v),z(h),z(h+2),z(j),z(j+2));
end
end
end
end

%Matrice B le cui colonne sono la proiezione di T(v_j)
B=zeros(N+1,N+1);
for i=1:N+1

for j=1:N+1

for 1=1:N+1
B(i,j)=B(i,j)+Alfa(l,i)*integral2(@(s,t) k(s,t).*Base{j}(t).*Base{l}(s), z(1),z(1+2),z(j),z(]
+2));
end

end
end
%Risoluzione del sistema lineare associato
X=(eye(size(B))-B)\g';
%Calcolo della soluzione $u_n"G$
u=zeros(1,N+1);
for i=1:N+1

for j=1:N+1

%Sommiamo a $u_n~G$ il primo elemento che la compone: $\pi_n f$
u=u+Alfa(i,j)*integral(@(s) f(s).*Base{i}(s), z(i),z(i+2)).*Base{j}(x);

end
end
%sAggiungiamo a $u_n"G$ il secondo elemento: una combinazione di splines
%lineari
for i=1:N+1

u=u+X(1i).+Base{i}(x);
end
%Conclusione del programma
end

21

Programma per risoluzione con metodo di Kulkarni per splines lineari

function [u] = Kulkarni_T_lineari(x_i,x_f,N,k,f)

%Metodo di Kulkarni per risoluzione di equazioni integrale di seconda specie
%Metodo di Kulkarni per risoluzione di equazioni integrale di seconda
%specie (di Fredholm){u-T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
%snucleo dell'operatore integrale T

%INPUT: —x_1i,x_f estremi

% —k nucleo di T

% —f

% —N numero di elementi della base
%0UTPUT: u soluzione approssimata

%Inizializziamo il vettore x per la creazione della base di splines lineari
x=linspace(x_1i,x_f,N+1);

%Inizializzazione delle splines lineari, definite come function handles
Base=Splines_Lineari(x);

%Definizione di un vettore di nodi ausiliario z, estensione di x, per
%spermettere un calcolo piu' agevole

z=[x(1) x x(end)];

%Inizializzazione matrice dei pesi

M=zeros (N+1,N+1);

for i=1:N+1
for j=1:N+1
M(i,j)=integral(@(s)Base{i}(s).*Base{j}(s), x_i,x_f);
end
end
%Inizializzazione dell'inversa della matrice dei pesi
M_1=inv(M);

%Inizializzazione delle matrici A e C che rappresentano rispettivamente
%<T(v_j),v_i> e <T"2(v_j),v_i>
A=zeros (N+1,N+1);
C=zeros(N+1,N+1);
%Inizializzazione dei vettori b e g, che rispettivamente rappresentano
%<f,v_i> e <T(f),v_i>
b=zeros(1,N+1);
g=zeros(1,N+1);
%Calcolo di A,B, beg
for i=1:N+1
for j=1:N+1
A(i,j)=integral2(@(s,t) k(s,t).*Base{j}(t).*Base{i}(s),z(i),z(i+2),z(j),z(j+2));
C(i,j)=integral3(@(s,t,v) k(s,t).xk(t,v).xBase{j}(v).*Base{i}(s),z(i),z(i+2),x 1i,x_f,z(j),z(j+2));
end
b(i)=integral(@(s) f(s).xBase{i}(s),z(1),z(i+2));
g(i)=integral2(@(s,t) k(s,t).*xf(t).+*Base{i}(s),z(i),z(i+2),x_1i,x_f);
end
%Risoluzione del sistema lineare relativo per trovare w_n
X=(M+eye(size(A))—A—C+M*(M_1xA)"2)\(b'+g'—A+M_1xb");
%Inizializzazione vettori di supporto per il calcolo di u a partire da
%omega_n. Y indica il termine P_n(T(w_n)), b_1 il termine P_n(f)
Y=M_1xA*X;
b_1=M_1xb";
%Inizializzazione di u
u=zeros(1,N+1);
for 1=1:N+1
%Introduciamo una variabile di appoggio per calcolare T(w_n)
sum=0;

for j=1:N+1
%E' necessario calcolare il valore di T(w_n) per in ogni nodo della
%smesh
sum=sum+X(j).*integral(@(t) k(x(l),t).*Base{j}(t),z(j),z(j+2));
end
%Soluzione approssimata, scritta come somma della sua proiezione su X_n
%e del suo ortogonale
u(L)=F(x(1))+X(1)+sum=Y (1) —b_1(1);
end
%Conclusione del programma
end

22

Sottoprogramma per la creazione della base di splines

function [f]=Splines_Lineari(x)
%Creazione di splines lineari sui nodi forniti da x
%Creazione di splines lineari sui nodi forniti da x

SINPUT: X vettore dei nodi
%0UTPUT: —f cell array con function handle corrispondenti alle splines
% lineari

%Dichiarazione N, numero di elementi di x
N=length(x);
%Dichiarazione prima splines lineare
f{1}=@(s) (x(2)}=s)/(x(2)x(1)).*((x(1)<=s & s<x(2)));
%Dichiarazione splines intermedie
for i=2:N—1
f{i}=@(s) (s—x(i—1))/(x(i)—x(i—1)).*x(x(i—1)<=s & s<x(i))+(x(i+1)—s)/(x(i+1)—x(1)).*x((x(i)<=s &s<x(i+1)));
end
%Dichiarazione splines finale
F{N}=@(s) (sx(N—1))/(x(N)—x(N-1)).*(x(N—1)<=s &s<=x(N));
end

Sottorogramma per il confronto delle soluzioni

%Dichiarazione dell'intervallo [a,b]

a=0; b=1;

%Definizione del nucleo k(s,t) dell'operatore T
k=@(s,t) s—t

%Definizione di f(s)

f=@(s) s.73

%Soluzione esatta
sol=@(s) s.73+21/130.%s—11/65

format short e;

%Inizializzazione di N, numero di nodi
N=16;

%Definizione del vettore dei nodi
x=linspace(a,b,N+1);

%Soluzione con metodo di Galerkin
u_g=Galerkin_T_costanti(a,b,N,k,f);
%Soluzione con metodo di Kulkarni
u_k=Kulkarni_T_costanti(a,b,N(1),k,f);
%Soluzione esatta calcolata su x
soluzione=sol(x);

%Grafico di confronto
plot(x(l:end—1),u_g(l:end—1),x(1l:end—1),u_k(1l:end—1),x(1l:end—1),soluzione(l:end—1), '* g')

ax=gca;
ax.FontSize = 12;
legend('Soluzione Galerkin', 'Soluzione Kulkarni', 'Soluzione esatta', 'interpreter', 'latex','location', 'best’,

'fontSize', 28)
xlabel('s', 'interpreter', 'latex', 'fontsize',20)
ylabel('$u(s)$', 'interpreter', 'latex', 'fontsize',20, 'rotation',0)

23

Sottorogramma per tabelle di confronto degli errori e degli ordini delle soluzioni

%Dichiarazione dell'intervallo [a,b]

a=0; b=1;

%Definizione del nucleo k(s,t) dell'operatore T
k=@(s,t) s—t

%Definizione di f(s)

f=@(s) s.”3

%Soluzione esatta
sol=@(s) s.”3+21/130.%s—11/65

format short e;
%Numero di iterate
M=5;
%Inizializzazione del vettore del numero di intervalli N
N=zeros(1,M);
%Inizializzazione vettore dei passi della mesh h
h=linspace(1,M);
%Definizione del primo elemento di N
N(1)=2;
%Calcolo del primo elemento di h
h=(b—a)/N(1);
%Definizione del vettore dei nodi
x=linspace(a,b,N(1)+1);
%Soluzione con metodo di Galerkin
u_g=Galerkin_T_costanti(a,b,N(1),k,f);
%Soluzione con metodo di Kulkarni
u_k=Kulkarni_T_costanti(a,b,N(1),k,f);
%Soluzione esatta calcolata su x
soluzione=sol(x);
%Definizione degli errori al 1 passo
errore_g=zeros(1,M);
errore_k=zeros(1,M);
%Errore Galerkin (escludiamo l'ultimo nodo per via della struttura delle
%splines)
errore_g(1l)=max(abs(u_g(l:end—1)-soluzione(l:end—1)));
%Errore Kulkarni (escludiamo l'ultimo nodo per via della struttura delle
%ssplines)
errore_k(1)=max(abs(u_k(1l:end—1)-soluzione(l:end—1)));
%Calcolo degli errori al raddoppiare di N
for i=2:M
%Raddoppiamo N
N(i)=2*N(i—1);
%Aggiornamento di h
h(i)=(b-a)/(N(i));
%Aggiornato il vettore dei nodi
x=linspace(a,b,N(i)+1);
%Calcolo delle due soluzioni approssimate e di quella esatta
u_g=Galerkin_T_costanti(a,b,N(i),k,f);
u_k=Kulkarni_T_costanti(a,b,N(i),k,f);
soluzione=sol(x);
%Calcolo degli errori all'i—esimo passo
errore_g(i)=max(abs(u_g(l:end—1)-soluzione(1l:end—1)))
errore_k(i)=max(abs(u_k(1l:end—1)-soluzione(1l:end—1)));
end
%sConfrontiamo i due errori e i relativi ordini
Errore=table(int16(N)',h', errore_g', errore_k',[0,log((errore_g(l:end—1)./errore_g(2:end)))./log(2)1"', [0, (log
((errore_k(1l:end—1)./errore_k(2:end)))./log(2))1"');
Errore.Properties.VariableNames={'N','h', 'Errore Galerkin', 'Errore Kulkarni', 'Ordine Galerkin', 'Ordine
Kulkarni'};
Errore

24

Riferimenti bibliografici

[

2]

[5]

(6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G.A. Chandler, Superconvergence of numerical solutions of second kind integral
equations, Ph.D. Thesis (Australian National University, ACT, Australia, 1979).

F. Chatelin, Spectral approzimation of linear operators (Academic Press, New York,
1983).

F. Chatelin and R. Lebbar, "The iterated projection solution for the Fredholm
integral equation of second kind’, J. Austral. Math. Soc. Ser. B 22 (1981), 439-451.

C. de Boor, A bound on the L., norm of Ly-approximation by splines in terms of
a global mesh ratio’, Maths. Comput. 30 (1976), 765-771.

C. de Boor and B. Swartz, 'Collocation at Gaussin points’, SIAM J. Numer. Anal.
10 (1973), 582-606.

J. Douglas, Jr., T. Dupont and L. Wahlbin, ’Optimal L., error estimates for Galerkin
approximations to solutions of two point boundary value problems’, Math. Comp.
29 (1975), 475-483.

[.G. Graham, S. Joe and I.H. Sloan, 'Iterated Galerkin versus iterated collocation
for integral equations of the second kind’, IMA J. Numer. Anal. 5 (1985), 355-369.

Q. Hu, ’Interpolation correction for collocation solutions of Fredholm integro-
differential equations’, Math. Comp. 67 (1998), 987-999.

R.P. Kulkarni, ’A New Superconvergent projection method for approximate
solutions of eigenvalue problems’, Numer. Funct. Anal. Optim. 24 (2003), 75-84.

Q. Lin, S. Zhang and N. Yan, ’An acceleration method for integral equations by
using interpolation post-processing’, Adv. Comput. Math. 9 (1998), 117-129.

G.R. Richter, "Superconvergence of piecewise polynomial Galerkin approximations
for Fredholm integral equations of the second kind’, Num. Math. 31 (1978), 63-70.

E. Schock, ’Galerkin like methods for equations of the second kind’, J. Integral
Equations Appl. 4 (1982), 361-364.

[.H. Sloan, 'Improvement by iteration for compact operator equations’, Math. Comp.
30 (1976), 758-764.

[LH. Sloan, 'Four variants of the Gaterkin method for Integral equations of the
second kind’, IMA J. Numer. Anal. 4 (1984), 9-17.

A. Spence and K.S. Thomas, 'On superconvergence properties of Galerkin’s method
for compact operator equations’, IMA J. Numer. Anal. 3 (1983), 253-271.

Rekha P. Kulkarni (2003). ’A superconvergence result for solutions of compact
operator equations’, Bulletin of the Australian Mathematical Society, 68, (2003)
517-528, doi:10.1017,/S0004972700037916

H. Brezis, 'Functional Analysis, Sobolev Spaces and Partial Differential Equations’,
Springer (2011)

25

