
DIPARTIMENTO DI SCIENZE MATEMATICHE, FISICHE E INFORMATICHE

Corso di Laurea Triennale in Matematica
Tesi di Laurea in
Analisi Numerica

RISOLUZIONE NUMERICA DI
EQUAZIONI INTEGRALI DI

FREDHOLM DI SECONDA SPECIE
CON IL METODO DI KULKARNI

Relatore
Chiar.ma Prof.ssa Alessandra AIMI

Candidato
Alexei CONDURACHI

Settembre 2020

Indice

I Introduzione 2

II Risoluzione numerica 2

1 Obiettivi 2

2 Presentazione del problema 3

3 Risoluzione numerica con metodo di Galërkin 4

4 Risoluzione numerica con metodo di Kulkarni 5

5 Stime degli errori 7

6 Ordini di convergenza 9

7 Esempi numerici con proiezione ortogonale 11
7.1 Esempio 1 . 11
7.2 Esempio 2 . 12
7.3 Esempio 3 . 13
7.4 Esempio 4 . 14

8 Esempi numerici con proiezione interpolatoria 15
8.1 Esempio 1 . 15
8.2 Esempio 2 . 16
8.3 Esempio 3 . 17

9 Conclusioni 18

10 Appendice 19

Bibliografia 25

1

Parte I

Introduzione
Nell’ambito scientifico capita frequentemente di imbattersi in equazioni differenziali dalla
più svariata struttura, ma sono altrettanto frequenti e di elevato interesse le equazioni
integrali, ovvero quelle in cui l’incognita compare anche sotto il segno di integrale. Esse
hanno le varie applicazioni in ambito fisico, e non solo, a tal punto che si rende necessario
poter trovare la soluzione (o le molteplici) a queste. Spesso però la risoluzione di que-
sti problemi matematici risulta ostica e complessa. Grazie agli sviluppi tecnologici degli
ultimi decenni alla Matematica è stato fornito un nuovo strumento per poter affrontare
suddetti problemi: il calcolatore. Questo adoperato in maniera oculata, permette di risol-
vere problemi di elevata complessità in tempi drasticamente inferiori.
Proprio della risoluzione di questi ultimi si occupa l’Analisi Numerica. Non bisogna pen-
sare che quest’ultima nasca con l’avvento dei calcolatori moderni: varie figure chiave della
Matematica, quali Newton, Lagrange, Jacobi, Gauss ed Eulero, si erano interessate al-
lo studio e alla creazione di algoritmi secoli prima che il calcolatore elettronico venisse
inventato.

Parte II

Risoluzione numerica
1 Obiettivi
Per poter affrontare un problema reale da un punto di vista matematico è necessario crea-
re quello che viene detto un modello che traduce in linguaggio matematico un fenomeno
reale. Da questo si passa ad un problema numerico che viene risolto attraverso algoritmi.
In questi passaggi vengono effettuate varie semplificazioni e approssimazioni che possono
avere ripercussioni sulla soluzione ottenuta. Così come accade in laboratorio dove è ne-
cessario tenere conto degli errori e della tolleranza degli strumenti, allo stesso modo in
Analisi Numerica bisogna tenere conto degli errori di rappresentazione, ovvero i valori che
si possono considerare in aritmetica di macchina dovuti alla natura finita del calcolatore,
degli errori analitici, dovuti al passaggio da continuo a discreto, e degli errori causati dalle
semplificazioni effettuate.
Lo studio degli errori analitici è cruciale nella fase di modellizzazione in quanto ci forni-
sce in prima battuta una iniziale stima dell’errore che intercorre fra la soluzione esatta e
quella approssimata.
Risulta ovvio che in molti casi si possono fare migliorie sulla soluzione per ridurre l’errore
commesso. Per esempio, possiamo approssimare un cerchio con un poligono più semplice
di n lati: se aumentiamo il numero n otteniamo una approssimazione più accurata che
però richiede un numero maggiore di passaggi. Allo stesso modo possiamo migliorare la
nostra soluzione, ma questo spesso si traduce in un tempo computazionale maggiore. Di-
venta fondamentale dunque analizzare gli algoritmi e trovarne di più efficienti.
Di seguito confronteremo il metodo di Galërkin e il metodo di Kulkarni per risolvere equa-

2

zioni di Fredholm di seconda specie, osservando quale converge più rapidamente.
Il metodo di Galërkin, fondamentale in vari ambiti dell’Analisi Numerica, verrà adoperato
come elemento di riferimento e paragone per il più recente metodo di Kulkarni.

2 Presentazione del problema
Introduciamo la nozione di equazione integrale di Fredholm di seconda specie.

Definizione 2.1. Sia T un operatore lineare compatto definito sullo spazio X complesso
e di Banach1. Siano f e u elementi di X. Viene detta equazione integrale di Fredholm
di seconda specie la seguente

u− Tu = f (1)

Assumiamo che (I − T) sia invertibile, in modo che (1) abbia un’unica soluzione.
Facciamo un maggior raffinamento su X e supponiamo sia uno spazio di Hilbert2.

Definizione 2.2. Un operatore lineare P su X, tale che P 2 = P si dice proiezione.

Consideriamo la successione di proiezioni πn : X → Xn convergente puntualmente
all’operatore identità I.
Esse operano nel seguente modo: ad x ∈ X associano un elemento xn ∈ Xn.

Per le proprietà dell’operatore di proiezione si dimostra che ogni elemento di X si può
scrivere come somma di un elemento di Xn e di uno del suo complementare Xc

n.

Sia ϕi i = 0, . . . , n una base del sottospazio vettoriale Xn di dimensione finita. Con-
sideriamo la matrice dei pesi 〈ϕi, ϕj〉, indichiamo con A := (αij) la sua inversa. In questa
tesi considereremo proiezioni del seguente tipo

πn(f) :=
n∑

i,j=1

αij < f, ϕi > ϕj

Proposizione 2.1. L’operatore πn appena definito, è una proiezione. Ovvero verifica

π2
n = πn

1uno spazio X si dice Banach se e solo se è uno spazio normato completo rispetto alla metrica indotta
dalla norma.

2ogni spazio di Hilbert è anche di Banach

3

Dimostrazione. Sia u ∈ X e <,> il prodotto interno classico su X, allora

πn(πnu) =
n∑

l,k=0

〈
n∑

i,j=0

αij〈u, ϕi〉ϕj, ϕl〉ϕk

=
n∑

l,k=0

(
αlk

n∑
i,j=0

〈u, ϕi〉〈ϕj, ϕl〉ϕk

)

=
n∑
k=0

(
n∑

i,j=0

αij〈u, ϕi〉ϕk
n∑
l=0

αl,k〈ϕj, ϕl〉

)

=
n∑

i,k=0

αik〈u, ϕi〉ϕk = πnu

3 Risoluzione numerica con metodo di Galërkin
Il metodo di Galërkin fornisce una soluzione discreta al problema continuo. Questo pas-
saggio si rivelerà cruciale, poiché ci permette di poter implementare un algoritmo che
darà come risultato la soluzione approssimata sostituendo all’operatore T un operatore
di rango finito Tn.
Il metodo di Galërkin prevede quindi che l’operatore T venga sostituito da

TGn = πnTπn

e che f sia sostituita da πnf .
Otteniamo così la nuova equazione

uGn − πnTπnuGn = πnf (2)

Risulta immediatamente che vale il seguente

lim
n→∞

un = u

Procediamo ora alla ricerca del sistema lineare da risolvere per trovare le soluzioni ap-
prossimate.
Per il metodo di Galërkin un viene scritto nel seguente modo

uGn := πnf +
n∑
i=1

Xiϕi

sostituendo in (2), otteniamo

πnf +
n∑
i=1

Xiϕi = πnf + πn(T (πnf +
n∑
i=1

Xiϕi)) (3)

La (3) diventa dunque
n∑
j=1

Xjϕj = (
n∑

i,h=1

αih < Tπnf, ϕi > ϕh) + (
n∑

i,h=1

αih < T (
n∑
j=1

Xjϕj), ϕi > ϕh)

4

Sviluppando per l’elemento j − esimo di X, otteniamo

Xj = (
n∑
i=1

αij < T (
n∑

t,s=1

αts < f, ϕt > ϕs), ϕi >) + (
n∑
p=1

Xp

n∑
i=1

αij < T (ϕp), ϕi >)

Xj = (
n∑
i=1

αij(
n∑

t,s=1

αts < f, ϕt >) < T (ϕs), ϕi >) + (
n∑
p=1

Xp

n∑
i=1

αij < T (ϕp), ϕi >)

Definiamo il vettore g e la matrice B come segue

g(k) :=
n∑
h=1

αhk

n∑
i,j=1

< f, ϕi >< T (ϕj), ϕh >

B := (bij) :=
n∑
h=1

αhi < T (ϕj), ϕh >

Con queste notazioni la (3) si riduce al seguente sistema lineare

(I−B)X = g

4 Risoluzione numerica con metodo di Kulkarni
Il metodo di Kulkarni prevede che T venga sostituito da

Tn = πnTπn + πnT (I − πn) + (I − πn)Tπn

Dunque si ha
‖T − Tn‖ = ‖(I − πn)T (I − πn)‖ → 0 per n→∞

Si ottiene quindi la seguente approssimazione dell’equazione (1)

un − (πnTπn + πnT (I − πn) + (I − πn)Tπn)un = f (4)

Applicando πn ad entrambi i membri

πnun − (πnTπn + πnT (I − πn) + πn(I − πn)Tπn)un = πnf (5)

Osservazione 4.1. Per le proprietà di πn si ha πn(I − πn) = 0

Dunque la precedente equazione si riduce a

πnun − πnTπnun − πnT (I − πn)un = πnf (6)

Per ricavare il valore di (I − πn)un, applichiamo (I − πn) alla (4)

(I − πn)un − (I − πn)Tπnun = (I − πn)f

ovvero otteniamo che

(I − πn)un = (I − πn)Tπnun + (I − πn)f

5

Sostituendo nella (6) otteniamo

πnun − πnTπnun − πnT (I − πn)Tπnun − πnT (I − πn)f = πnf

Ponendo ωn = πnun, abbiamo la seguente equazione

ωn − (πnT + πnT (I − πn)T)ωn = πnf + πnT (I − πn)f (7)

Poiché un è combinazione della sua proiezione su Xn e sul suo complementare, si scriverà
nel seguente

un = πnun + (I − πn)un = ωn + (I − πn)Tωn + (I − πn)f (8)

Esplicitiamo quindi i termini di (7) considerando che ωn =
n∑
i=1

Xiϕi

• πnTωn = πn

n∑
t=1

XtT (ϕt) =
n∑

i,h=1

αij

(
n∑
t=1

< T (ϕt), ϕi > ϕj

)

• πnT
2ωn = πnT

(
n∑
t=1

T (ϕt)

)
=

n∑
i,j=1

αij

(
n∑
t=1

< T 2(ϕt), ϕ > ϕj

)

• πnTπnTωn =
n∑

i,j=1

αij

(
n∑
k,l

αkl

(
n∑
t=1

Xt < T (ϕt), ϕk >

)
< T (ϕl), ϕi > ϕj

)

• πnf =
n∑

i,j=1

(αij < f, ϕi > ϕj)

• πnTf =
n∑

i,j=1

(αij < T (f), ϕi > ϕj)

• πnTπnf =
n∑

i,j=1

αij

(
n∑

k,l=1

(αkl < f, ϕk >) < T (ϕl), ϕi > ϕj

)

Introduciamo dunque le matrici A, B, M e i vettori b, g definiti come segue

• A :=< T (ϕj), ϕi >

• B :=< T 2(ϕj), ϕi >

• M :=< ϕi, ϕj >

• b :=< f, ϕi >

• g :=< T (f), ϕi >

6

Possiamo riscrivere la (7) in forma matriciale

(I−M−1A−M−1B+ (M−1A)2)X = M−1 (b+A−AM−1b
)

(9)

o equivalentemente moltiplicando per M

(M−A−B+M(M−1A)2)X =
(
b+A−AM−1b

)
Una volta risolto il sistema è sufficiente sostituire il valore di ωn in (8) per trovare la
soluzione discretizzata un.

5 Stime degli errori
Consideriamo la seguente definizione per l’operatore integrale

(Tx)(s) =

∫ 1

0

k(s, t)x(t)dt , s ∈ [0, 1] (10)

con k(·, ·) ∈ C ([0, 1]× [0, 1]). Allora T : L2[0, 1]→ L2[0, 1] è un operatore lineare compat-
to.
Sia r ≥ 1. Se k(·, ·) ∈ Cr ([0, 1]× [0, 1]), allora R(T) ⊂ Cr[0, 1], dove R(T) indica il ran-
ge dell’operatore T . Quindi, se k(·, ·) ∈ Cr ([0, 1]× [0, 1]) e f ∈ Cr[0, 1], allora u ∈ Cr[0, 1].

Per u ∈ Cr[0, 1], si indichi con u(r) la r-esima derivata di u. Definiamo

Di,jk(s, t) :=
∂i+j

∂si∂tj
k(s, t) , s, t ∈ [0, 1]

‖k‖r,∞ =
r∑
i=0

r∑
j=0

‖Di,jk‖∞

e

‖u‖r,∞ =
r∑
i=0

‖u(i)‖∞

La stima dell’errore per uGn e un sono ottenute dal seguente

Teorema 5.1. Per n sufficientemente grandi

‖u− uGn ‖ ≤ C1‖(I − πn)u‖ (11)

e
‖u− un‖ ≤ C2‖(I − πn)T (I − πn)u‖ (12)

Dimostrazione. Siccome ‖T − TGn ‖ → 0 per n→∞, per n grandi, (I − TGn) è invertibile,
‖T − TGn ‖ ≤ C1 e, poiché (I − T) è invertibile, ‖T + πnT‖ ≤ C2 con C1, C2 indipendenti
da n. Dunque

u− uGn = [(I − T)−1 − (I − πnTπn)−1]f =

= [(I − T)−1 − (I − πnTπn)−1](I − T)u =

= [I − (I − πnTπn)−1(I − T)]u =

= [(I − πnTπn)−1(I − πnTπn)− (I − πnTπn)−1(I − T)]u =

= (I − πnTπn)−1[I − πnTπn − I + T]u =

= (I − πnTπn)−1[T − πnTπn]u

7

Studiamo ora T − πnTπn

T − πnTπn = T − πnT + πnT − πnTπn = (I − πn)T + πnT (I − πn) =
= T − Tπn + Tπn − πnTπn = T (I − πn) + (I − πn)Tπn

Dunque, poiché i termini sono equivalenti

(I − πn)T + πnT (I − πn) = T (I − πn) + (I − πn)Tπn
⇒ (I − πn)T (I − πn) = T (I − πn)(I − pin)
⇒ (I − πn)T = T (I − πn)

Sostituendo il risultato ottenuto nella precedente, abbiamo che

T − πnTπn = T (I − πn) + πnT (I − πn) =
= (T + πnT)(I − πn)

In conclusione abbiamo che

u− uGn = (I − πnTπn)−1(T + πnT)(I − πn)u

Dunque

‖u− uGn ‖ ≤ ‖(I − πnTπn)−1‖‖T + πnT‖‖(I − πn)u‖ ≤
≤ C‖(I − πn)u‖

che conclude la dimostrazione per (11), posto C := C1 · C2.
Dimostriamo ora la (12).
Poiché ‖T −Tn‖ → 0 per n→∞, per n grandi, (I−Tn) è invertibile e ‖(I−Tn)−1‖ ≤ C2,
costante indipendente da n.
Abbiamo

u− un = [(I − T)−1 − (I − Tn)−1]f =

= [(I − T)−1 − (I − Tn)−1](I − T)u =

= [I − (I − Tn)−1(I − T)]u =

= [(I − Tn)−1(I − Tn)− (I − Tn)−1(I − T)]u =

= (I − Tn)−1[I − Tn − I + T]u =

= (I − Tn)−1(T − Tn)u

Quindi,

‖u− un‖ ≤ ‖(I − Tn)−1‖‖(I − πn)T (I − πn)u‖
≤ C2‖(I − πn)T (I − πn)u‖

8

6 Ordini di convergenza
Analizziamo ora gli ordini di convergenza dei due metodi.

Sia X = L2[0, 1] e indichiamo con < , > il prodotto interno classico su X. Sia T un
operatore integrale, come definito in (10), con nucleo k(·, ·) ∈ Cr([0, 1]× [0, 1]). Per ogni
intero n, sia

0 = t0 < t1 < · · · < tn = 1

una partizione di [0, 1] e per i = 1, . . . , n. Definiamo hi := ti − ti−1, h := max
i=0,...,n

hi. Si

assume inoltre che h→ 0 per n→∞.
Sia Xn = Sνr,n, dove Sνr,n indica lo spazio dei polinomi a tratti di ordine r (ovvero di grado
≤ r− 1) sui punti di interruzione t1, . . . , tn−1 e con ν derivate continue (−1 ≤ ν ≤ r− 2).
Sia πn : X → Xn la proiezione ortogonale.
Per ν = −1 o ν = 0, è noto, senza alcuna restrizione sulla partizione di [0, 1], che (vedere
Richter ([11]) e de Boor ([4]), rispettivamente)

‖πn‖L∞→L∞ ≤ c (13)

Poiché πnx → x per n → ∞ per ogni x ∈ X, i risultati ottenuti nella Sezione 5 sono
ancora validi.
Per l’analisi degli ordini è cruciale la seguente stima.

Proposizione 6.1. Per x ∈ Cr[0, 1], (vedere Chatelin ([3]))

‖(I − πn)x‖∞ ≤ C1‖x(r)‖∞hr (14)

con C1 costante indipendente da n e h.

Proposizione 6.2. Per x ∈ Cr[0, 1] abbiamo

‖T (I − πn)x‖r,∞ ≤ (C1)
2(r + 1)‖k‖r,∞‖x(r)‖∞h2r

Dimostrazione. Per j fissato tale che 0 ≤ j ≤ r, si abbiamo che la derivata j-esima
rispetto ad s di T (I − πn)x è

[T (I − πn)x](j)(s) =
∫ 1

0

∂j

∂sj
k(s, t)(I − πn)x(t)dt

Definiamo
l(s, t) :=

∂j

∂sj
k(s, t), s, t ∈ [0, 1]

Per s ∈ [0, 1] fissato, indichiamo con ls(t) := l(s, t), t ∈ [0, 1] per mettere in evidenza la
dipendenza da t. Allora

[T (I − πn)x](j)(s) =
∫ 1

0

ls(t)(I − πn)x(t)dt

= 〈(I − πn)x, ls(t)〉
= 〈(I − πn)x, (I − πn)ls(t)〉

9

poichè πn è la proiezione ortogonale e poiché siamo in R. Dunque per ogni s ∈ [0, 1]
otteniamo

|[T (I − πn)x](j)(s)| ≤ ‖(I − πn)x‖∞‖(I − πn)ls‖i∞
≤ C1‖x(r)‖∞h · C1‖l(r)s ‖∞h
≤ C1‖x(r)‖∞‖k‖r,∞h2r

Passando all’estremo superiore su s ∈ [0, 1] abbiamo

‖[T (I − πn)x](j)‖∞ ≤ (C1)
2‖k‖r,∞‖x(r)‖∞h2r (15)

e dunque

‖T (I − πn)x‖r,∞ =
r∑
j=0

‖[T (I − πn)x](j)‖∞ ≤ (C1)
2(r + 1)‖k‖r,∞‖x(r)‖∞h2r

Stimiamo ora l’errore per (12)

Proposizione 6.3. Per x ∈ Cr[0, 1], si ottiene

‖(I − πn)T (I − πn)x‖∞ ≤ C2h
3r (16)

Dimostrazione. Grazie alla stima (14) abbiamo

‖(I − πn)T (I − πn)x‖∞ ≤ C1‖[T (I − πn)x](r)‖∞hr

Per la (15), si ottiene

‖(I − πn)T (I − πn)x‖∞ ≤ C1 · (C1)
2‖k‖r,∞‖x(r)‖∞h2r · hr

≤ (C1)
3‖k‖r,∞‖x(r)‖∞h3r

che conclude la dimostrazione, ponendo C2 := (C1)
3‖k‖r,∞‖x(r)‖∞

Risultati analoghi si ottengono nel caso πn sia una proiezione interpolatoria (vedere
Kulkarni ([16])).
Enunciamo dunque il seguente teorema.

Teorema 6.1. Sia πn proiezione ortogonale o proiezione interpolatoria su Xn. Nel caso
della proiezione ortogonale si considerino k(·, ·) ∈ Cr([0, 1]× [0, 1]) e f ∈ Cr[0, 1], mentre
per la proiezione interpolatoria si considerino k(·, ·) ∈ C2r([0, 1] × [0, 1]) e f ∈ C2r[0, 1].
Allora

‖u− un‖ = O(h3r) (17)

Dimostrazione. Studiamo il caso della proiezione ortogonale, da (12) e da (16) segue la
(17)

‖u− un‖2 ≤ C2‖(I − πn)T (I − πn)u‖2
≤ C2‖(I − πn)T (I − πn)u‖∞
≤ (C2)

2h3r

ovvero la tesi.

10

7 Esempi numerici con proiezione ortogonale
Vediamo alcuni esempi di equazioni di Fredholm di seconda specie e confrontiamo la
soluzione esatta, la soluzione approssimata con metodo di Galërkin uGn e quella con il
metodo di Kulkarni un.
Nei seguenti esempi ci siamo posti nello spazio L2 sull’intervallo [a, b]. Consideriamo come
sottospazio, l’insieme dato dalle splines costanti a tratti, ovvero dei polinomi di grado
r = 0 e ν = −1.
Ci aspettiamo quindi ordine di convergenza 1 per il metodo di Galërkin e 3 per quello di
Kulkarni.
Ricordiamo l’equazione di Fredholm

u(s)− Tu(s) = f(s), T =

∫ b

a

k(s, t)u(t)dt, s, t ∈ [a, b]

7.1 Esempio 1

Consideriamo il seguente caso

u(s)−
∫ 1

0

1

2
(s+ 1)e−st · u(t)dt = e−s +

1

2
(e−s−1 − 1)

che ha la seguente soluzione
u(s) = e−s

Le soluzioni approssimate con i due metodi sono le seguenti

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Vediamo in modo evidente come il metodo di Kulkarni risulti un grande miglioramento
rispetto quello di Galërkin, che comunque fornisce una buona approssimazione anche per
n non elevati.
Confrontiamo, al raddoppiare del numero di sottointervalli n, l’andamento degli errori
e degli ordini dei due metodi nella seguente tabella (N.B. per mettere in evidenza p, il
rapporto tra due errori successivi è stato normalizzato dividendo per log 2)

11

N h Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
__ __________ _______________ _______________ _______________ _______________

2 5.0000e−01 2.2006e−01 2.5147e−03 − −
4 2.5000e−01 1.1666e−01 3.2438e−04 9.1557e−01 2.9546e+00
8 1.2500e−01 6.0305e−02 4.0781e−05 9.5199e−01 2.9917e+00
16 6.2500e−02 3.0687e−02 5.0974e−06 9.7464e−01 3.0000e+00
32 3.1250e−02 1.5483e−02 6.3666e−07 9.8699e−01 3.0012e+00

La tabella mostra come i risultati numerici siano in perfetto accordo con le stime teoriche
presentate nelle sezioni precedenti. Inoltre mette in evidenza la maggior precisione del
metodo di Kulkarni.

7.2 Esempio 2

Studiamo il comportamento dei due metodi sull’intervallo [0, π] e mostriamo che i risultati
ottenuti nelle sezioni precedenti si estendono in modo naturale su intervalli del tipo [a, b]
L’equazione di Fredholm in questo caso è la seguente

u(s)−
∫ π

0

sin(s− t)u(t)dt = cos(s)

che ha soluzione
u(s) =

2

4 + π2
(2cos(s) + πsin(s))

Le soluzioni sono mostrate di seguito

0 0.5 1 1.5 2 2.5 3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Vediamo dunque che anche spostandosi dall’intervallo [0, 1] i due metodi risultano efficaci.
Anche gli errori e gli ordini continuano ad essere in linea con le stime calcolate in
precedenza, come si nota dalla seguente tabella

12

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
__ _______________ _______________ _______________ _______________

2 3.8665e−01 1.0874e−01 − −
4 2.2307e−01 1.7007e−02 7.9353e−01 2.6766e+00
8 1.0763e−01 2.1455e−03 1.0514e+00 2.9868e+00
16 5.3491e−02 2.6896e−04 1.0087e+00 2.9958e+00
32 2.6557e−02 3.3475e−05 1.0102e+00 3.0062e+00

7.3 Esempio 3

Studiamo nuovamente l’equazione dell’esempio precedente, ponendoci però nell’intervallo
[−1, 0] in cui k e f non godono di particolari simmetrie

u(s)−
∫ 0

−1
sin(s− t)u(t)dt = cos(s)

che ha soluzione

u(s) = − 2

9 + cos(2)
(−2sin(s)− 5cos(s) + +cos(s+ 2))

Ancora una volta entrambi i metodi forniscono soluzioni consistenti ed efficaci per il pro-
blema in analisi

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Allo stesso modo non si evincono anomalie nemmeno per gli errori e gli ordini di conver-
genza

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
__ _______________ _______________ _______________ _______________

2 3.6149e−01 1.6365e−03 − −
4 1.7975e−01 2.7387e−04 1.0080e+00 2.5790e+00
8 8.9581e−02 4.1105e−05 1.0047e+00 2.7361e+00
16 4.4711e−02 5.5470e−06 1.0025e+00 2.8895e+00
32 2.2335e−02 7.1827e−07 1.0013e+00 2.9491e+00

13

7.4 Esempio 4

Analizziamo ora il caso in cui la regolarità del nucelo k e di f non sono quelle attese,
ovvero non sono di classe C1[a.b]. Un esempio di questa situazione è la seguente equazione

u(s)−
∫ π

0

s5/2t5u(t)dt =
√
s

con soluzione
u(s) =

√
s+

34

195
s5/2

Notiamo che le soluzioni ottenute con i due metodi implementati approssimano in modo
efficace la soluzione.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

Inoltre notiamo che i due metodi continuano ad essere convergenti nonostante f non sia
di classe C1 in a = 0.

N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
__ _______________ _______________ _______________ _______________

2 4.7928e−01 5.4903e−03 0.0000e+00 0.0000e+00
4 3.3484e−01 1.0430e−03 5.1739e−01 2.3961e+00
8 2.3598e−01 1.5539e−04 5.0486e−01 2.7468e+00
16 1.6672e−01 2.1034e−05 5.0125e−01 2.8851e+00
32 1.1786e−01 2.7306e−06 5.0032e−01 2.9455e+00

La discontinuità in uno dei due estremi non inficia dunque la convergenza, ma riduce
l’ordine per entrambi i metodi (vedere Kulkarni ([16]), Osservazione 4.7, p 525).

14

8 Esempi numerici con proiezione interpolatoria
Studiamo il comportamento dei due algoritmi per operatori di proiezione interpolatoria
invece che di proiezione ortogonale. Ci poniamo dunque nello spazio Xn = S0

2,n delle spli-
nes lineari.
Il passaggio a questo spazio implica un aumento dal punto di vista del costo computazio-
nale, ma viene ripagato con ordini di convergenza doppi rispetto al caso con operatori di
proiezione ortogonale.

8.1 Esempio 1

Cerchiamo le soluzioni approssimate della seguente

u(s)−
∫ 1

0

(s− t)u(t)dt = s3

che ha la seguente soluzione

u(s) = s3 +
21

130
s− 11

65

Otteniamo dunque le seguenti soluzioni approssimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

La tabella degli errori pare dare risultati non coerenti con quelli del grafico, infatti
N Errore Galerkin Errore Kulkarni
__ _______________ _______________

2 1.1250e−01 2.1213e−12
4 2.9464e−02 2.4469e−12

Notiamo immediatamente che l’errore per il metodo di Kulkarni è dell’ordine di 10−12 già
per n = 2 e non migliora all’aumentare del numero di nodi. Questo fenomeno è dovuto
alle limitazioni del calcolatore. Poiché la soluzione un è data da un contributo dovuto a f
e da una combinazione degli elementi della base questo fa sì che già per n = 2 la soluzione

15

di Kulkarni vada a coincidere con quella esatta. L’errore non cala perché i contributi sono
dell’ordine di 10−16, inferiori al valore dell’eps di macchina, ovvero il più piccolo numero
rappresentabile in aritmetica di macchina.
Lo stesso ragionamento non è valido per il metodo di Galërkin in quanto non è presente
il contributo f , ma πnf che genera un errore dovuto alla proiezione.

8.2 Esempio 2

Consideriamo l’Esempio 1 della sezione precedente e confrontiamo i risultati

u(s)−
∫ 1

0

1

2
(s+ 1)e−st · u(t)dt = e−s +

1

2
(e−s−1 − 1)

con soluzione
u(s) = e−s

Le soluzioni approssimate su una base di splines lineari sono le seguenti

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e la relativa tabella
N Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
__ _______________ _______________ _______________ _______________

2 1.8432e−02 2.0108e−06 − −
4 4.9009e−03 3.0513e−08 1.9111e+00 6.0422e+00
8 1.2639e−03 4.7732e−10 1.9551e+00 5.9983e+00
16 3.2079e−04 2.0094e−11 1.9782e+00 4.5701e+00

E’ evidente che le soluzioni in questo caso sono ben più precise di quelle ottenute nella
sezione precedente.
Notiamo che vengono nuovamente rispettate le stime attese per gli errori e per gli ordini
di convergenza.

16

8.3 Esempio 3

Prendiamo in analisi come ultimo esempio la seguente equazione, definita sull’intervallo
[−π, π]

u(s)−
∫ pi

−π
sin(s− t)u(t)dt = cos(s)

la cui soluzione esatta è
πsin(s) + cos(s)

1 + π2

Otteniamo dunque le seguenti approssimazioni della soluzione

-4 -3 -2 -1 0 1 2 3 4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

La tabella degli errori è la seguente
N h Errore Galerkin Errore Kulkarni Ordine Galerkin Ordine Kulkarni
__ __________ _______________ _______________ _______________ _______________

2 3.1416e+00 5.1155e−01 9.4879e−02 − −
4 1.5708e+00 5.8484e−02 2.8243e−03 3.1288e+00 5.0701e+00
8 7.8540e−01 1.5496e−02 3.0450e−05 1.9162e+00 6.5353e+00
16 3.9270e−01 3.9129e−03 4.3334e−07 1.9856e+00 6.1348e+00

Notiamo che gli errori questa sono dell’ordine di 10−1, ma ciò è dovuta all’ampiezza
dell’intervallo e quindi di conseguenza da h che risulta essere dell’ordine dell’unità anche
per n = 4.

17

9 Conclusioni
Abbiamo potuto osservare dunque come il metodo di Kulkarni fornisca un miglioramento
importante per la risoluzione di equazioni integrali di Fredholm di seconda specie. Entram-
bi i metodi richiedono la risoluzione di un sistema lineare di pari dimensione. Nonostante
ciò, il metodo di Kulkarni risulta avere un costo computazionale maggiore dovuto al cal-
colo di < T 2(ϕj), ϕi > e di < T (f), ϕi >.
Questo però viene ripagato con una precisione maggiore e con un ordine di convergenza
triplo rispetto al metodo di Galërkin.
E’ stato inoltre mostrato che gli algoritmi sono efficaci su intervalli del tipo [a.b] senza
alcuna particolare limitazione.
E’ opportuno sottolineare che le stime teoriche effettuate nelle sezioni precedenti erano
validi per n sufficientemente grandi. Questo ragionamento viene a perdersi in aritmetica
di macchina, emerso anche dagli esempi. Dunque aumentare in maniera non oculata n
non garantisce la convergenza delle soluzioni fornite dai due algoritmi.

18

10 Appendice
Si forniscono in questa sezione i codici Matlab utilizzati nella presente tesi

Programma per risoluzione con metodo di Galërkin per splines costanti
1 function [u] = Galerkin_T_costanti(x_i,x_f,N,k,f)
2 %Metodo di Galerkin per risoluzione di equazioni integrale di seconda specie
3 %Metodo di Galerkin per risoluzione di equazioni integrale di seconda
4 %specie (di Fredholm){u−T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
5 %nucleo dell'operatore integrale T
6 %Si sfruttano risultati analitici e il che la proiezione sia
7 %ortogonale, che ci permette di dire che la matrice dei pesi e'
8 %diagonale di costante h, con inversa a sua volta diagonale di
9 %costante 1/h

10 %INPUT: −x_i,x_f estremi
11 % −k nucleo di T
12 % −f
13 % −N numero di elementi della base
14 %OUTPUT: −u soluzione approssimata
15
16 %Inizializziamo il vettore x per la creazione della base di splines
17 %costanti
18 x=linspace(x_i,x_f,N+1);
19 %Definiamo il passo della mesh
20 h=(x_f−x_i)/N;
21 %Inizializzazione del vettore g, che rappresenta la proiezione di T(P_n(f))
22 g=zeros(1,N);
23 for i=1:N
24 for j=1:N
25 g(i)=g(i)+1/h^2*integral(f,x(j),x(j+1))*integral2(k,x(i),x(i+1),x(j),x(j+1));
26 end
27 end
28 %Matrice B le cui colonne sono la proiezione di T(v_j)
29 B=zeros(N,N);
30 for i=1:N
31 for j=1:N
32 B(i,j)=1/h*integral2(k,x(i),x(i+1),x(j),x(j+1));
33 end
34 end
35 %Risoluzione del sistema lineare associato al metodo di Galerkin
36 X=(eye(size(B))−B)\g';
37 %Inizializzazione della soluzione
38 u=zeros(1,N+1);
39 for i=1:N
40 %La soluzione u e' data dalla proiezione di f a cui si somma il vettore
41 %la i−esima spline per il coefficiente opportuno dato da X
42 u(i)=1/h*integral(f,x(i),x(i+1))+X(i);
43 end
44 %Definizione dell'ultimo nodo per rispettare le dimensioni di partenza
45 u(N+1)=u(N);
46 %Conclusione del programma
47 end

19

Programma per risoluzione con metodo di Kulkarni per splines costanti
1 function [u] = Kulkarni_T_costanti(x_i,x_f,N,k,f)
2 %Metodo di Kulkarni per risoluzione di equazioni integrale di seconda specie
3 %Metodo di Galerkin per risoluzione di equazioni integrale di seconda
4 %specie (di Fredholm){u−T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
5 %nucleo dell'operatore integrale T
6
7 %INPUT: −x_i,x_f estremi
8 % −k nucleo di T
9 % −f

10 % −N numero di elementi della base
11 %OUTPUT: −u soluzione approssimata
12
13 %Inizializziamo il vettore x per la creazione della base di splines lineari
14 x=linspace(x_i,x_f,N+1);
15 %Definiamo il passo della mesh
16 h=(x_f−x_i)/N;
17 %Definiamo la matrice M dei pesi e la sua inversa M −̂1
18 M=eye(N,N)*h;
19 M_1=eye(N,N)*1/h;
20 %Inizializzazione delle matrici A e C che rappresentano rispettivamente
21 %<T(v_j),v_i> e <T^2(v_j),v_i>
22 A=zeros(N,N);
23 C=zeros(N,N);
24 %Inizializzazione dei vettori b e g, che rispettivamente rappresentano
25 %<f,v_i> e <T(f),v_i>
26 b=zeros(1,N);
27 g=zeros(1,N);
28 %Calcolo di A,B, b e g
29 for l=1:N
30 for j=1:N
31 A(l,j)=integral2(@(s,t) k(s,t),x(l),x(l+1),x(j),x(j+1));
32 C(l,j)=integral3(@(s,t,v) k(s,t).*k(t,v),x(l),x(l+1),x_i,x_f,x(j),x(j+1));
33 end
34 b(l)=integral(@(s) f(s),x(l),x(l+1));
35 g(l)=integral2(@(s,t) k(s,t).*f(t),x(l),x(l+1),x_i,x_f);
36 end
37 %Risoluzione del sistema lineare relativo per trovare w_n
38 X=(M*eye(size(A))−A−C+M*(M_1*A)^2)\(b'+g'−A*M_1*b');
39 %Inizializzazione vettori di supporto per il calcolo di u a partire da
40 %omega_n. Y indica il termine P_n(T(w_n)), b_1 il termine P_n(f)
41 Y=M_1*A*X;
42 b_1=M_1*b';
43 %Inizializzazione di u
44 u=zeros(1,N+1);
45 for l=1:N
46 %Introduciamo una variabile di appoggio per calcolare T(w_n)
47 sum=0;
48 for j=1:N
49 %E' necessario calcolare il valore di T(w_n) per in ogni nodo della
50 %mesh
51 sum=sum+X(j).*integral(@(t) k(x(l),t), x(j),x(j+1));
52 end
53 %Soluzione approssimata, scritta come somma della sua proiezione su X_n
54 %e del suo ortogonale
55 u(l)=f(x(l))+X(l)+sum−Y(l)−b_1(l);
56 end
57 %E' necessario un ulteriore ciclo per il calcolo del valore di u
58 %nell'ultimo nodo
59 sum=0;
60 for j=1:N
61 sum=sum+X(j).*integral(@(t) k(x(N+1),t), x(j),x(j+1));
62 end
63 %Definizione dell'ultimo nodo per rispettare le dimensioni di partenza
64 u(N+1)=f(x(N+1))+X(N)+sum−b_1(N)−Y(N);
65 %Conclusione del programma
66 end

20

Programma per risoluzione con metodo di Galërkin per splines lineari
1 function [u] = Galerkin_T_lineari(x_i,x_f,N,k,f)
2 %Metodo di Galerkin per risoluzione di equazioni integrale di seconda specie
3 %Metodo di Galerkin per risoluzione di equazioni integrale di seconda
4 %specie (di Fredholm){u−T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
5 %nucleo dell'operatore integrale T
6
7 %INPUT: −x_i,x_f estremi
8 % −k nucleo di T
9 % −f

10 % −N numero di elementi della base
11 %OUTPUT: −u soluzione approssimata
12
13 %Inizializziamo il vettore x per la creazione della base di splines lineari
14 x=linspace(x_i,x_f,N+1);
15 %Inizializzazione delle splines lineari, definite come function handles
16 Base=Splines_Lineari(x);
17 %Definizione di un vettore di nodi ausiliario z, estensione di x, per
18 %permettere un calcolo piu' agevole
19 z=[x(1) x x(N+1)];
20 %Inizializzazione matrice dei pesi
21 Alfa_1=zeros(N+1,N+1);
22 for i=1:N+1
23 for j=1:N+1
24 Alfa_1(i,j)=integral(@(s)Base{i}(s).*Base{j}(s),max(z(i),z(j)),min(z(i+2),z(j+2)));
25 end
26 end
27 %Inizializzazione dell'inversa della matrice dei pesi
28 Alfa=inv(Alfa_1);
29 %Inizializzazione del vettore g, che rappresenta la proiezione di T(P_n(f))
30 g=zeros(1,N+1);
31 for l=1:N+1
32 for h=1:N+1
33 for i=1:N+1
34 for j=1:N+1
35 g(l)=g(l)+Alfa(h,l)*Alfa(i,j)*integral(@(s)f(s).*Base{i}(s),z(i),z(i+2))*integral2(@(v,r) k(v,r)

.*Base{j}(r).*Base{h}(v),z(h),z(h+2),z(j),z(j+2));
36 end
37 end
38 end
39 end
40 %Matrice B le cui colonne sono la proiezione di T(v_j)
41 B=zeros(N+1,N+1);
42 for i=1:N+1
43 for j=1:N+1
44 for l=1:N+1
45 B(i,j)=B(i,j)+Alfa(l,i)*integral2(@(s,t) k(s,t).*Base{j}(t).*Base{l}(s), z(l),z(l+2),z(j),z(j

+2));
46 end
47 end
48 end
49 %Risoluzione del sistema lineare associato
50 X=(eye(size(B))−B)\g';
51 %Calcolo della soluzione u_n^G
52 u=zeros(1,N+1);
53 for i=1:N+1
54 for j=1:N+1
55 %Sommiamo a u_n^G il primo elemento che la compone: $\pi_n f$
56 u=u+Alfa(i,j)*integral(@(s) f(s).*Base{i}(s), z(i),z(i+2)).*Base{j}(x);
57 end
58 end
59 %Aggiungiamo a u_n^G il secondo elemento: una combinazione di splines
60 %lineari
61 for i=1:N+1
62 u=u+X(i).*Base{i}(x);
63 end
64 %Conclusione del programma
65 end

21

Programma per risoluzione con metodo di Kulkarni per splines lineari
1 function [u] = Kulkarni_T_lineari(x_i,x_f,N,k,f)
2 %Metodo di Kulkarni per risoluzione di equazioni integrale di seconda specie
3 %Metodo di Kulkarni per risoluzione di equazioni integrale di seconda
4 %specie (di Fredholm){u−T(u)=f} su un intervallo [x_i,x_f] con k(x,y)
5 %nucleo dell'operatore integrale T
6
7 %INPUT: −x_i,x_f estremi
8 % −k nucleo di T
9 % −f

10 % −N numero di elementi della base
11 %OUTPUT: −u soluzione approssimata
12
13 %Inizializziamo il vettore x per la creazione della base di splines lineari
14 x=linspace(x_i,x_f,N+1);
15 %Inizializzazione delle splines lineari, definite come function handles
16 Base=Splines_Lineari(x);
17 %Definizione di un vettore di nodi ausiliario z, estensione di x, per
18 %permettere un calcolo piu' agevole
19 z=[x(1) x x(end)];
20 %Inizializzazione matrice dei pesi
21 M=zeros(N+1,N+1);
22 for i=1:N+1
23 for j=1:N+1
24 M(i,j)=integral(@(s)Base{i}(s).*Base{j}(s), x_i,x_f);
25 end
26 end
27 %Inizializzazione dell'inversa della matrice dei pesi
28 M_1=inv(M);
29 %Inizializzazione delle matrici A e C che rappresentano rispettivamente
30 %<T(v_j),v_i> e <T^2(v_j),v_i>
31 A=zeros(N+1,N+1);
32 C=zeros(N+1,N+1);
33 %Inizializzazione dei vettori b e g, che rispettivamente rappresentano
34 %<f,v_i> e <T(f),v_i>
35 b=zeros(1,N+1);
36 g=zeros(1,N+1);
37 %Calcolo di A,B, b e g
38 for i=1:N+1
39 for j=1:N+1
40 A(i,j)=integral2(@(s,t) k(s,t).*Base{j}(t).*Base{i}(s),z(i),z(i+2),z(j),z(j+2));
41 C(i,j)=integral3(@(s,t,v) k(s,t).*k(t,v).*Base{j}(v).*Base{i}(s),z(i),z(i+2),x_i,x_f,z(j),z(j+2));
42 end
43 b(i)=integral(@(s) f(s).*Base{i}(s),z(i),z(i+2));
44 g(i)=integral2(@(s,t) k(s,t).*f(t).*Base{i}(s),z(i),z(i+2),x_i,x_f);
45 end
46 %Risoluzione del sistema lineare relativo per trovare w_n
47 X=(M*eye(size(A))−A−C+M*(M_1*A)^2)\(b'+g'−A*M_1*b');
48 %Inizializzazione vettori di supporto per il calcolo di u a partire da
49 %omega_n. Y indica il termine P_n(T(w_n)), b_1 il termine P_n(f)
50 Y=M_1*A*X;
51 b_1=M_1*b';
52 %Inizializzazione di u
53 u=zeros(1,N+1);
54 for l=1:N+1
55 %Introduciamo una variabile di appoggio per calcolare T(w_n)
56 sum=0;
57
58 for j=1:N+1
59 %E' necessario calcolare il valore di T(w_n) per in ogni nodo della
60 %mesh
61 sum=sum+X(j).*integral(@(t) k(x(l),t).*Base{j}(t),z(j),z(j+2));
62 end
63 %Soluzione approssimata, scritta come somma della sua proiezione su X_n
64 %e del suo ortogonale
65 u(l)=f(x(l))+X(l)+sum−Y(l)−b_1(l);
66 end
67 %Conclusione del programma
68 end

22

Sottoprogramma per la creazione della base di splines
1 function [f]=Splines_Lineari(x)
2 %Creazione di splines lineari sui nodi forniti da x
3 %Creazione di splines lineari sui nodi forniti da x
4 %INPUT: −x vettore dei nodi
5
6 %OUTPUT: −f cell array con function handle corrispondenti alle splines
7 % lineari
8
9 %Dichiarazione N, numero di elementi di x

10 N=length(x);
11 %Dichiarazione prima splines lineare
12 f{1}=@(s) (x(2)−s)/(x(2)−x(1)).*((x(1)<=s & s<x(2)));
13 %Dichiarazione splines intermedie
14 for i=2:N−1
15 f{i}=@(s) (s−x(i−1))/(x(i)−x(i−1)).*(x(i−1)<=s & s<x(i))+(x(i+1)−s)/(x(i+1)−x(i)).*((x(i)<=s &s<x(i+1)));
16 end
17 %Dichiarazione splines finale
18 f{N}=@(s) (s−x(N−1))/(x(N)−x(N−1)).*(x(N−1)<=s &s<=x(N));
19 end

Sottorogramma per il confronto delle soluzioni
1 %Dichiarazione dell'intervallo [a,b]
2 a=0; b=1;
3 %Definizione del nucleo k(s,t) dell'operatore T
4 k=@(s,t) s−t
5 %Definizione di f(s)
6 f=@(s) s.^3
7 %Soluzione esatta
8 sol=@(s) s.^3+21/130.*s−11/65
9

10 format short e;
11
12 %Inizializzazione di N, numero di nodi
13 N=16;
14 %Definizione del vettore dei nodi
15 x=linspace(a,b,N+1);
16 %Soluzione con metodo di Galerkin
17 u_g=Galerkin_T_costanti(a,b,N,k,f);
18 %Soluzione con metodo di Kulkarni
19 u_k=Kulkarni_T_costanti(a,b,N(1),k,f);
20 %Soluzione esatta calcolata su x
21 soluzione=sol(x);
22 %Grafico di confronto
23 plot(x(1:end−1),u_g(1:end−1),x(1:end−1),u_k(1:end−1),x(1:end−1),soluzione(1:end−1),'* g')
24 ax=gca;
25 ax.FontSize = 12;
26 legend('Soluzione Galerkin', 'Soluzione Kulkarni', 'Soluzione esatta','interpreter','latex','location','best',

'fontSize', 28)
27 xlabel('s','interpreter','latex','fontsize',20)
28 ylabel('$u(s)$','interpreter','latex','fontsize',20,'rotation',0)

23

Sottorogramma per tabelle di confronto degli errori e degli ordini delle soluzioni
1 %Dichiarazione dell'intervallo [a,b]
2 a=0; b=1;
3 %Definizione del nucleo k(s,t) dell'operatore T
4 k=@(s,t) s−t
5 %Definizione di f(s)
6 f=@(s) s.^3
7 %Soluzione esatta
8 sol=@(s) s.^3+21/130.*s−11/65
9

10 format short e;
11 %Numero di iterate
12 M=5;
13 %Inizializzazione del vettore del numero di intervalli N
14 N=zeros(1,M);
15 %Inizializzazione vettore dei passi della mesh h
16 h=linspace(1,M);
17 %Definizione del primo elemento di N
18 N(1)=2;
19 %Calcolo del primo elemento di h
20 h=(b−a)/N(1);
21 %Definizione del vettore dei nodi
22 x=linspace(a,b,N(1)+1);
23 %Soluzione con metodo di Galerkin
24 u_g=Galerkin_T_costanti(a,b,N(1),k,f);
25 %Soluzione con metodo di Kulkarni
26 u_k=Kulkarni_T_costanti(a,b,N(1),k,f);
27 %Soluzione esatta calcolata su x
28 soluzione=sol(x);
29 %Definizione degli errori al 1 passo
30 errore_g=zeros(1,M);
31 errore_k=zeros(1,M);
32 %Errore Galerkin (escludiamo l'ultimo nodo per via della struttura delle
33 %splines)
34 errore_g(1)=max(abs(u_g(1:end−1)−soluzione(1:end−1)));
35 %Errore Kulkarni (escludiamo l'ultimo nodo per via della struttura delle
36 %splines)
37 errore_k(1)=max(abs(u_k(1:end−1)−soluzione(1:end−1)));
38 %Calcolo degli errori al raddoppiare di N
39 for i=2:M
40 %Raddoppiamo N
41 N(i)=2*N(i−1);
42 %Aggiornamento di h
43 h(i)=(b−a)/(N(i));
44 %Aggiornato il vettore dei nodi
45 x=linspace(a,b,N(i)+1);
46 %Calcolo delle due soluzioni approssimate e di quella esatta
47 u_g=Galerkin_T_costanti(a,b,N(i),k,f);
48 u_k=Kulkarni_T_costanti(a,b,N(i),k,f);
49 soluzione=sol(x);
50 %Calcolo degli errori all'i−esimo passo
51 errore_g(i)=max(abs(u_g(1:end−1)−soluzione(1:end−1)));
52 errore_k(i)=max(abs(u_k(1:end−1)−soluzione(1:end−1)));
53 end
54 %Confrontiamo i due errori e i relativi ordini
55 Errore=table(int16(N)',h', errore_g', errore_k',[0,log((errore_g(1:end−1)./errore_g(2:end)))./log(2)]', [0,(log

((errore_k(1:end−1)./errore_k(2:end)))./log(2))]');
56 Errore.Properties.VariableNames={'N','h', 'Errore Galerkin','Errore Kulkarni', 'Ordine Galerkin', 'Ordine

Kulkarni'};
57 Errore

24

Riferimenti bibliografici
[1] G.A. Chandler, Superconvergence of numerical solutions of second kind integral

equations, Ph.D. Thesis (Australian National University, ACT, Australia, 1979).

[2] F. Chatelin, Spectral approximation of linear operators (Academic Press, New York,
1983).

[3] F. Chatelin and R. Lebbar, ’The iterated projection solution for the Fredholm
integral equation of second kind’, J. Austral. Math. Soc. Ser. B 22 (1981), 439-451.

[4] C. de Boor, ’A bound on the L∞ norm of L2-approximation by splines in terms of
a global mesh ratio’, Maths. Comput. 30 (1976), 765-771.

[5] C. de Boor and B. Swartz, ’Collocation at Gaussin points’, SIAM J. Numer. Anal.
10 (1973), 582-606.

[6] J. Douglas, Jr., T. Dupont and L. Wahlbin, ’Optimal L∞ error estimates for Galerkin
approximations to solutions of two point boundary value problems’, Math. Comp.
29 (1975), 475-483.

[7] I.G. Graham, S. Joe and I.H. Sloan, ’Iterated Galerkin versus iterated collocation
for integral equations of the second kind’, IMA J. Numer. Anal. 5 (1985), 355-369.

[8] Q. Hu, ’Interpolation correction for collocation solutions of Fredholm integro-
differential equations’, Math. Comp. 67 (1998), 987-999.

[9] R.P. Kulkarni, ’A New Superconvergent projection method for approximate
solutions of eigenvalue problems’, Numer. Funct. Anal. Optim. 24 (2003), 75-84.

[10] Q. Lin, S. Zhang and N. Yan, ’An acceleration method for integral equations by
using interpolation post-processing’, Adv. Comput. Math. 9 (1998), 117-129.

[11] G.R. Richter, ’Superconvergence of piecewise polynomial Galerkin approximations
for Fredholm integral equations of the second kind’, Num. Math. 31 (1978), 63-70.

[12] E. Schock, ’Galerkin like methods for equations of the second kind’, J. Integral
Equations Appl. 4 (1982), 361-364.

[13] I.H. Sloan, ’Improvement by iteration for compact operator equations’,Math. Comp.
30 (1976), 758-764.

[14] I.H. Sloan, ’Four variants of the Gaterkin method for Integral equations of the
second kind’, IMA J. Numer. Anal. 4 (1984), 9-17.

[15] A. Spence and K.S. Thomas, ’On superconvergence properties of Galerkin’s method
for compact operator equations’, IMA J. Numer. Anal. 3 (1983), 253-271.

[16] Rekha P. Kulkarni (2003). ’A superconvergence result for solutions of compact
operator equations’, Bulletin of the Australian Mathematical Society, 68, (2003)
517-528, doi:10.1017/S0004972700037916

[17] H. Brezis, ’Functional Analysis, Sobolev Spaces and Partial Differential Equations’,
Springer (2011)

25

